# 使用Poetry进行Langchain项目本地开发指南
Langchain项目是一系列用于构建认知应用程序架构的库集合。本指南详细介绍如何在本地环境中设置和运行Langchain项目,并进行代码贡献。我们将通过Poetry来管理项目依赖。
## 技术背景介绍
Langchain包含多个模块,例如核心接口langchain-core、第三方集成langchain-community、实验性组件langchain-experimental等。这些模块允许开发者使用链、代理和检索逻辑构建复杂的应用程序。
## 核心原理解析
项目依赖管理采用Poetry工具,确保每个模块的依赖环境独立且可控。通过Poetry的灵活性,我们可以轻松地添加、更新或删除依赖,同时保持环境的稳定性。
## 代码实现演示
### 环境设置
首先,确保你安装了正确版本的Poetry(v1.7.1+)。如果使用Conda,请先创建并激活一个新的Conda环境:
```bash
conda create -n langchain python=3.9
conda activate langchain
安装Poetry并配置使用当前Python环境:
# 安装Poetry
pip install poetry
# 配置Poetry使用虚拟环境中的Python
poetry config virtualenvs.prefer-active-python true
安装依赖
进入langchain-community模块目录并安装开发依赖:
cd libs/community
poetry install --with lint,typing,test,test_integration
验证安装:
make test # 运行测试以确保所有依赖安装成功并工作正常
如果遇到WheelFileValidationError
错误,确保使用Poetry v1.6.1+,并尝试禁用现代安装:
poetry config installer.modern-installation false
poetry install
单元测试和集成测试
运行单元测试以验证逻辑正确性:
make test # 运行单元测试
# 或在Docker中运行
make docker_tests
代码格式化和检查
确保代码格式和风格符合项目标准:
make format # 格式化代码
make lint # 代码检查
应用场景分析
Langchain允许快速构建集成多种机器学习和AI技术的应用,有助于开发高效的认知计算程序。Langchain-experimental模块提供了实验性功能,可以在测试环境中尝试前沿技术。
实践建议
- 在提交PR前,确保所有本地测试通过并进行适当的格式化和lint检查。
- 如果添加新的依赖,请使用可选的方式,保证项目的轻量化。
- 对于实验性功能,务必提供详尽的说明和测试,以便其他开发者理解和验证。
结束语:如果遇到问题欢迎在评论区交流。
---END---