2243: [SDOI2011]染色
Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 8800 Solved: 3305
[Submit][Status][Discuss]
Description
给定一棵有n个节点的无根树和m个操作,操作有2类:
1、将节点a到节点b路径上所有点都染成颜色c;
2、询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),
如“112221”由3段组成:“11”、“222”和“1”。
请你写一个程序依次完成这m个操作。
Input
第一行包含2个整数n和m,分别表示节点数和操作数;
第二行包含n个正整数表示n个节点的初始颜色
下面 行每行包含两个整数x和y,表示x和y之间有一条无向边。
下面 行每行描述一个操作:
“C a b c”表示这是一个染色操作,把节点a到节点b路径上所有点(包括a和b)都染成颜色c;
“Q a b”表示这是一个询问操作,询问节点a到节点b(包括a和b)路径上的颜色段数量。
Output
对于每个询问操作,输出一行答案。
Sample Input
6 5
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5
Sample Output
3
1
2
1
2
HINT
数N<=10^5,操作数M<=10^5,所有的颜色C为整数且在[0, 10^9]之间。
Source
代码:
//线段树区间染色查询区间颜色段数量,树剖之后还要考虑两段衔接之后颜色段是否减少。 #include<iostream> #include<cstdio> #include<cstring> using namespace std; const int MAXN=100009; int n,m,fa[MAXN],son[MAXN],lev[MAXN],top[MAXN],id[MAXN],head[MAXN],size[MAXN],val[MAXN]; int tot,cnt,col[MAXN<<2],tag[MAXN<<2],lef[MAXN<<2],rig[MAXN<<2],a[MAXN],nowr,nowl; struct Edge { int to,next; }edge[MAXN<<1]; void init() { tot=cnt=0; memset(head,-1,sizeof(head)); for(int i=1;i<=n;i++) fa[i]=top[i]=i; } void addedge(int x,int y) { edge[tot].to=y;edge[tot].next=head[x]; head[x]=tot++; edge[tot].to=x;edge[tot].next=head[y]; head[y]=tot++; } void dfs1(int x,int d) { size[x]=1; lev[x]=d; son[x]=0; for(int i=head[x];i!=-1;i=edge[i].next){ int y=edge[i].to; if(y==fa[x]) continue; fa[y]=x; dfs1(y,d+1); size[x]+=size[y]; if(size[son[x]]<size[y]) son[x]=y; } } void dfs2(int x,int tp) { id[x]=++cnt; top[x]=tp; if(son[x]) dfs2(son[x],tp); for(int i=head[x];i!=-1;i=edge[i].next){ int y=edge[i].to; if(y==fa[x]||y==son[x]) continue; dfs2(y,y); } } void pushup(int rt) { lef[rt]=lef[rt<<1]; rig[rt]=rig[rt<<1|1]; col[rt]=col[rt<<1]+col[rt<<1|1]; if(rig[rt<<1]==lef[rt<<1|1]) col[rt]--; } void build(int rt,int l,int r) { tag[rt]=-1; if(l==r){ col[rt]=1; lef[rt]=rig[rt]=val[l]; return; } int mid=(l+r)>>1; build(rt<<1,l,mid); build(rt<<1|1,mid+1,r); pushup(rt); } void pushdown(int rt) { if(tag[rt]!=-1){ tag[rt<<1]=tag[rt<<1|1]=tag[rt]; lef[rt<<1]=lef[rt<<1|1]=rig[rt<<1]=rig[rt<<1|1]=tag[rt]; col[rt<<1]=col[rt<<1|1]=1; tag[rt]=-1; } } void update(int ql,int qr,int c,int rt,int l,int r) { if(ql<=l&&qr>=r){ tag[rt]=lef[rt]=rig[rt]=c; col[rt]=1; return; } pushdown(rt); int mid=(l+r)>>1; if(ql<=mid) update(ql,qr,c,rt<<1,l,mid); if(qr>mid) update(ql,qr,c,rt<<1|1,mid+1,r); pushup(rt); } void Update(int ql,int qr,int c) { int ltp=top[ql],rtp=top[qr]; while(ltp!=rtp){ if(lev[rtp]<lev[ltp]){ swap(ql,qr); swap(ltp,rtp); } update(id[rtp],id[qr],c,1,1,cnt); qr=fa[rtp]; rtp=top[qr]; } if(lev[qr]<lev[ql]) swap(qr,ql); update(id[ql],id[qr],c,1,1,cnt); } int query(int ql,int qr,int rt,int l,int r) { if(ql==l) nowl=lef[rt]; if(qr==r) nowr=rig[rt]; if(ql<=l&&qr>=r) return col[rt]; pushdown(rt); int mid=(l+r)>>1,s=0,lc=-1,rc=-1; if(ql<=mid){ s+=query(ql,qr,rt<<1,l,mid); lc=rig[rt<<1]; } if(qr>mid){ s+=query(ql,qr,rt<<1|1,mid+1,r); rc=lef[rt<<1|1]; } if(lc==rc&&lc!=-1) s--; return s; } int Query(int ql,int qr) { int s=0,ltp=top[ql],rtp=top[qr],lastl=-1,lastr=-1; nowl=-1,nowr=-1; while(ltp!=rtp){ if(lev[rtp]<lev[ltp]){ swap(ql,qr); swap(ltp,rtp); swap(lastl,lastr); } s+=query(id[rtp],id[qr],1,1,cnt); if(nowr==lastr&&lastr!=-1) s--; lastr=nowl; qr=fa[rtp]; rtp=top[qr]; } if(lev[qr]<lev[ql]) { swap(ql,qr);swap(lastl,lastr); } s+=query(id[ql],id[qr],1,1,cnt); if(nowl==lastl&&lastl!=-1) s--; if(nowr==lastr&&lastr!=-1) s--; return s; } int main() { //freopen("in.txt","r",stdin); scanf("%d%d",&n,&m); init(); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=1;i<n;i++){ int x,y; scanf("%d%d",&x,&y); addedge(x,y); } dfs1(1,1); dfs2(1,1); for(int i=1;i<=n;i++) val[id[i]]=a[i]; build(1,1,cnt); while(m--){ char ch[3]; int x,y,z; scanf("%s",ch); if(ch[0]=='Q'){ scanf("%d%d",&x,&y); printf("%d\n",Query(x,y)); }else{ scanf("%d%d%d",&x,&y,&z); Update(x,y,z); } } return 0; }