LeetCode426.Convert Binary Search Tree to Sorted Doubly Linked List

题目 

Convert a BST to a sorted circular doubly-linked list in-place. Think of the left and right pointers as synonymous to the previous and next pointers in a doubly-linked list.

Let's take the following BST as an example, it may help you understand the problem better: 

We want to transform this BST into a circular doubly linked list. Each node in a doubly linked list has a predecessor and successor. For a circular doubly linked list, the predecessor of the first element is the last element, and the successor of the last element is the first element.

The figure below shows the circular doubly linked list for the BST above. The "head" symbol means the node it points to is the smallest element of the linked list. 

Specifically, we want to do the transformation in place. After the transformation, the left pointer of the tree node should point to its predecessor, and the right pointer should point to its successor. We should return the pointer to the first element of the linked list.

The figure below shows the transformed BST. The solid line indicates the successor relationship, while the dashed line means the predecessor relationship.

 


Tag


代码

 

分治法。递归。pre引用节点。中序遍历。

/*
struct TreeNode {
	int val;
	struct TreeNode *left;
	struct TreeNode *right;
	TreeNode(int x) :
			val(x), left(NULL), right(NULL) {
	}
};*/
class Solution { 
public:
    TreeNode* Convert(TreeNode* pRootOfTree)
    {
        if(!pRootOfTree) return nullptr;
        TreeNode* pre = nullptr;        
        Core(pRootOfTree,pre);
        
        while(pRootOfTree->left)
        {
            pRootOfTree = pRootOfTree->left;
        }
        return pRootOfTree;
    }
    //中序遍历。递归。
    void Core(TreeNode* root,TreeNode*& pre)
    {
        if(!root) return;//终止 
        
        //左
        Core(root->left,pre);
        if(pre)
        {
            pre->right=root;
            root->left=pre;
        }
        
        //根
        pre =root;
        
        //右
        Core(root->right,pre); 
    }
};

问题

转载于:https://www.cnblogs.com/lightmare/p/10463461.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值