Spark技术内幕:究竟什么是RDD

原创 2014年10月07日 17:34:53

RDD是Spark最基本,也是最根本的数据抽象。http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf 是关于RDD的论文。如果觉得英文阅读太费时间,可以看这篇译文:http://shiyanjun.cn/archives/744.html 

本文也是基于这篇论文和源码,分析RDD的实现。

第一个问题,RDD是什么?Resilient Distributed Datasets(RDD,) 弹性分布式数据集。RDD是只读的、分区记录的集合。RDD只能基于在稳定物理存储中的数据集和其他已有的RDD上执行确定性操作来创建。这些确定性操作称之为转换,如map、filter、groupBy、join(转换不是程开发人员在RDD上执行的操作)。

RDD不需要物化。RDD含有如何从其他RDD衍生(即计算)出本RDD的相关信息(即Lineage),据此可以从物理存储的数据计算出相应的RDD分区。

看一下内部实现对于RDD的概述:

Internally, each RDD is characterized by five main properties:
 *
 *  - A list of partitions
 *  - A function for computing each split
 *  - A list of dependencies on other RDDs
 *  - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
 *  - Optionally, a list of preferred locations to compute each split on (e.g. block locations for
 *    an HDFS file)

每个RDD有5个主要的属性:

  1. 一组分片(partition),即数据集的基本组成单位
  2. 一个计算每个分片的函数
  3. 对parent RDD的依赖,这个依赖描述了RDD之间的lineage
  4. 对于key-value的RDD,一个Partitioner
  5. 一个列表,存储存取每个partition的preferred位置。对于一个HDFS文件来说,存储每个partition所在的块的位置。

org.apache.spark.rdd.RDD是一个抽象类,定义了RDD的基本操作和属性。这些基本操作包括map,filter和persist。另外,org.apache.spark.rdd.PairRDDFunctions定义了key-value类型的RDD的操作,包括groupByKey,join,reduceByKey,countByKey,saveAsHadoopFile等。org.apache.spark.rdd.SequenceFileRDDFunctions包含了所有的RDD都适用的saveAsSequenceFile。

RDD支持两种操作:转换(transformation从现有的数据集创建一个新的数据集;而动作(actions)在数据集上运行计算后,返回一个值给驱动程序。 例如,map就是一种转换,它将数据集每一个元素都传递给函数,并返回一个新的分布数据集表示结果。另一方面,reduce是一种动作,通过一些函数将所有的元素叠加起来,并将最终结果返回给Driver程序。(不过还有一个并行的reduceByKey,能返回一个分布式数据集)

Spark中的所有转换都是惰性的,也就是说,他们并不会直接计算结果。相反的,它们只是记住应用到基础数据集(例如一个文件)上的这些转换动作。只有当发生一个要求返回结果给Driver的动作时,这些转换才会真正运行。这个设计让Spark更加有效率的运行。例如,我们可以实现:通过map创建的一个新数据集,并在reduce中使用,最终只返回reduce的结果给driver,而不是整个大的新数据集。

默认情况下,每一个转换过的RDD都会在你在它之上执行一个动作时被重新计算。不过,你也可以使用persist(或者cache)方法,持久化一个RDD在内存中。在这种情况下,Spark将会在集群中,保存相关元素,下次你查询这个RDD时,它将能更快速访问。在磁盘上持久化数据集,或在集群间复制数据集也是支持的。

下表列出了Spark中的RDD转换和动作。每个操作都给出了标识,其中方括号表示类型参数。前面说过转换是延迟操作,用于定义新的RDD;而动作启动计算操作,并向用户程序返回值或向外部存储写数据。

表1 Spark中支持的RDD转换和动作
转换map(f : T ) U) : RDD[T] ) RDD[U]
filter(f : T ) Bool) : RDD[T] ) RDD[T]
flatMap(f : T ) Seq[U]) : RDD[T] ) RDD[U]
sample(fraction : Float) : RDD[T] ) RDD[T] (Deterministic sampling)
groupByKey() : RDD[(K, V)] ) RDD[(K, Seq[V])]
reduceByKey(f : (V; V) ) V) : RDD[(K, V)] ) RDD[(K, V)]
union() : (RDD[T]; RDD[T]) ) RDD[T]
join() : (RDD[(K, V)]; RDD[(K, W)]) ) RDD[(K, (V, W))]
cogroup() : (RDD[(K, V)]; RDD[(K, W)]) ) RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T]; RDD[U]) ) RDD[(T, U)]
mapValues(f : V ) W) : RDD[(K, V)] ) RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] ) RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)] ) RDD[(K, V)]
动作count() : RDD[T] ) Long
collect() : RDD[T] ) Seq[T]
reduce(f : (T; T) ) T) : RDD[T] ) T
lookup(k : K) : RDD[(K, V)] ) Seq[V] (On hash/range partitioned RDDs)
save(path : String) : Outputs RDD to a storage system, e.g., HDFS

注意,有些操作只对键值对可用,比如join。另外,函数名与Scala及其他函数式语言中的API匹配,例如map是一对一的映射,而flatMap是将每个输入映射为一个或多个输出(与MapReduce中的map类似)。

除了这些操作以外,用户还可以请求将RDD缓存起来。而且,用户还可以通过Partitioner类获取RDD的分区顺序,然后将另一个RDD按照同样的方式分区。有些操作会自动产生一个哈希或范围分区的RDD,像groupByKey,reduceByKey和sort等。

从一个例子开始

下面的例子摘自RDD的论文,实现了处理一个HDFS日志文件中错误日志的逻辑。

lines = spark.textFile("hdfs://...")  // lines is a org.apache.spark.rdd.MappedRDD
errors = lines.filter(_.startsWith("ERROR")) // errors is a org.apache.spark.rdd.FilteredRDD
errors.cache() // persist 到内存中
errors.count() // 触发action,计算errors有多少个,即ERROR的多少行
// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL")).count() 
// Return the time fields of errors mentioning
// HDFS as an array (assuming time is field
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"))
        .map(_.split('\t')(3))
        .collect()


spark是一个org.apache.spark.SparkContext的实例,基本上spark的应用都是以定义一个SparkContext开始的。textFile的定义如下:

 /**
   * Read a text file from HDFS, a local file system (available on all nodes), or any
   * Hadoop-supported file system URI, and return it as an RDD of Strings.
   */
  def textFile(path: String, minPartitions: Int = defaultMinPartitions): RDD[String] = {
    hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
      minPartitions).map(pair => pair._2.toString).setName(path)
  }

hadoopFile创建了一个org.apache.spark.rdd.HadoopRDD,而在HadoopRDD上调用map则生成了一个MappedRDD:
  /**
   * Return a new RDD by applying a function to all elements of this RDD.
   */
  def map[U: ClassTag](f: T => U): RDD[U] = new MappedRDD(this, sc.clean(f))

errors.cache()并不会立即执行,它的作用是在RDD的计算完成后,将结果cache起来,以供以后的计算使用,这样的话可以加快以后运算的速度。

errors.count() 就触发了一个action,这个时候就需要向集群提交job了:

 /**
   * Return the number of elements in the RDD.
   */
  def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum


提交后,SparkContext会将runJob提交到DAGScheduler,DAGScheduler会将当前的DAG划分成Stage,然后生成TaskSet后通过TaskScheduler的submitTasks提交tasks,而这又会调用SchedulerBackend,SchedulerBackend会将这些任务发送到Executor去执行。

如何划分Stage?如何生成tasks?接下来会进行解析。明天要上班了,今天早点休息吧。

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/anzhsoft2008/article/details/39851421

CBuilder中使用管道技术实例

废话不多说,大家来看代码bool __fastcall TForm1::RunCmd(AnsiString cmd,TStringList *stringlist){    TMemoryStream...
  • pp616
  • pp616
  • 2003-07-02 15:59:00
  • 1111

spark中的SparkContext实例的textFile使用的小技巧

网上很多例子,包括官网的例子,都是用textFile来加载一个文件创建RDD,类似sc.textFile("hdfs://n1:8020/user/hdfs/input") textFile的参数是...
  • xiao_jun_0820
  • xiao_jun_0820
  • 2015-03-12 10:23:43
  • 28233

SparkContext 与 textFile 生成hadoopRdd 源码解读

SparkContext的初始化 SparkContext是应用启动时创建的Spark上下文对象,是进行Spark应用开发的主要接口,是Spark上层应用与底层实现的中转站(SparkConte...
  • shenxiaoming77
  • shenxiaoming77
  • 2017-02-06 22:56:32
  • 816

Spark从外部读取数据之textFile

textFile函数 /** * Read a text file from HDFS, a local file system (available on all nodes), or a...
  • legotime
  • legotime
  • 2016-07-11 06:13:46
  • 34186

Spark修炼之道(高级篇)——Spark源码阅读:第三节 Spark Job的提交

前一我们分析了SparkContext的创建,这一节,我们介绍在RDD执行的时候,如何提交job进行分析,同样是下面的源码:import org.apache.spark.{SparkConf, Sp...
  • lovehuangjiaju
  • lovehuangjiaju
  • 2015-10-19 23:48:16
  • 7617

spark 的WholeTextFile使用以及文件路径

/**  *  */ package com.lewa.json import org.apache.spark.{ SparkConf, SparkContext } import...
  • u010770919
  • u010770919
  • 2014-11-20 16:47:05
  • 4890

spark中的SparkContext的textFile使用的小窍门

网上很多例子,包括官网的例子,都是用textFile来加载一个文件创建RDD,类似sc.textFile("hdfs://ss:8020/hdfs/input") textFile的参数是一个pat...
  • javastart
  • javastart
  • 2015-10-04 11:05:34
  • 1835

Spark RDD使用详解1--RDD原理

在集群背后,有一个非常重要的分布式数据架构,即弹性分布式数据集(Resilient Distributed Dataset,RDD)。它是一种有容错机制的特殊集合,可以分布在集群的节点上,以函数式编操...
  • guohecang
  • guohecang
  • 2016-06-22 19:34:07
  • 16455

那些年我们对Spark RDD的理解

这篇文章想从spark当初设计时为何提出RDD概念,相对于hadoop,RDD真的能给spark带来何等优势。之前本想开篇是想总体介绍spark,以及环境搭建过程,但个人感觉RDD更为重要铺垫 ...
  • stark_summer
  • stark_summer
  • 2015-12-09 15:57:31
  • 27913

Spark RDD 的那些个事事

内容来自京东金融微信公众号整理和解读 Google 发表三大论文  GFS  MapReduce BigTable  衍生出很多开源框架 ,毫无疑问 Hadoop 在 大家心中的地位是不可估...
  • haohaixingyun
  • haohaixingyun
  • 2017-03-28 22:08:54
  • 1746
收藏助手
不良信息举报
您举报文章:Spark技术内幕:究竟什么是RDD
举报原因:
原因补充:

(最多只允许输入30个字)