bzoj 3730 震波

给一个 $n$ 个点的带权树,每次修改一个点的权值,或者询问到 $x$ 距离不超过 $k$ 的点的权值和,强制在线

sol:

套路题,首先搞出一个点分树,每个重心,以到重心的距离为下标,点权为权值建两棵线段树,一个用来统计答案,一个用来消除对父节点的影响

每次修改和讯询问都是暴力爬树高,在经过的每棵线段树里修改就可以了

 

好了,然后我们来 $D$ 这个 sb 博主

道理我都懂,你求 LCA 为什么要树剖啊,复杂度强行加 log

明明树状数组就可以干的事情(单点加,区间和)你为什么要线段树啊,强行多大常数

OYJason 8160ms 就能过的题强行被我搞到了 13796ms

我真是个 sb

复杂度大概是 $O(nlogn + mlog^2n)$ ?

#include<bits/stdc++.h>
#define LL long long
using namespace std;
inline int read()
{
    int x = 0,f = 1;char ch = getchar();
    for(;!isdigit(ch);ch = getchar())if(ch == '-')f = -f;
    for(;isdigit(ch);ch = getchar())x = 10 * x + ch - '0';
    return x * f;
}
const int maxn = 500010;
int n,m,lastans;
int first[maxn],to[maxn << 1],nx[maxn << 1],cnt;
inline void add(int u,int v){to[++cnt] = v;nx[cnt] = first[u];first[u] = cnt;}
inline void ins(int u,int v){add(u,v);add(v,u);}
namespace LCA //RMQ is not good ? 
{
    int dep[maxn],bl[maxn],fa[maxn],size[maxn];
    inline void dfs1(int x)
    {
        size[x] = 1;
        for(int i=first[x];i;i=nx[i])
        {
            if(to[i] == fa[x])continue;
            fa[to[i]] = x;dep[to[i]] = dep[x] + 1;
            dfs1(to[i]);size[x] += size[to[i]];
        }
    }
    inline void dfs2(int x,int col)
    {
        int k = 0;
        bl[x] = col;
        for(int i=first[x];i;i=nx[i])
            if(dep[to[i]] > dep[x] && size[to[i]] > size[k])k = to[i];
        if(!k)return;
        dfs2(k,col);
        for(int i=first[x];i;i=nx[i])
            if(dep[to[i]] > dep[x] && to[i] != k)dfs2(to[i],to[i]);
    }
    inline int lca(int x,int y)
    {
        while(bl[x] != bl[y])
        {
            if(dep[bl[x]] < dep[bl[y]])swap(x,y);
            x = fa[bl[x]];
        }
        return dep[x] > dep[y] ? y : x;
    }
}
namespace SEG
{
    int root[maxn][2],ls[maxn << 4],rs[maxn << 4],val[maxn << 4],size;
    inline void Insert(int &x,int l,int r,int pos,int va)
    {
        if(!x) x = ++size;
        val[x] += va;
        if(l == r)return;
        int mid = (l + r) >> 1;
        if(pos <= mid)Insert(ls[x],l,mid,pos,va);
        else Insert(rs[x],mid + 1,r,pos,va);
    }
    inline int query(int x,int l,int r,int L,int R)
    {
        if(!x)return 0;
        if(L <= l && r <= R)return val[x];
        int mid = (l + r) >> 1,ans = 0;
        if(L <= mid)ans += query(ls[x],l,mid,L,R);
        if(R > mid)ans += query(rs[x],mid + 1,r,L,R);
        return ans;
    }
}
inline int q_dis(int x,int y){return LCA::dep[x] + LCA::dep[y] - (LCA::dep[LCA::lca(x,y)] << 1);}
int size[maxn],f[maxn],vis[maxn],d[maxn],v[maxn],son,root;
int nfa[maxn];
inline void solve(int rt,int type,int x,int fa)
{
    SEG::Insert(SEG::root[rt][type],0,n,d[x],v[x]);
    for(int i=first[x];i;i=nx[i])
    {
        if(to[i] == fa || vis[to[i]])continue;
        d[to[i]] = d[x] + 1;
        solve(rt,type,to[i],x);
    }
}
inline void getroot(int x,int fa)
{
    size[x] = 1,f[x] = 0;
    for(int i=first[x];i;i=nx[i])
    {
        if(to[i] == fa || vis[to[i]])continue;
        getroot(to[i],x);size[x] += size[to[i]];
        f[x] = max(f[x],size[to[i]]);
    }f[x] = max(f[x],son - size[x]);
    if(f[x] < f[root])root = x;
}
inline void work(int x)
{
    vis[x] = 1;d[x] = 0;solve(x,0,x,0);
    for(int i=first[x];i;i=nx[i])
    {
        if(vis[to[i]])continue;
        son = size[to[i]];root = 0;
        d[to[i]] = 1;getroot(to[i],0);
        solve(root,1,to[i],x);
        nfa[root] = x;work(root);
    }
}
inline int query(int x,int k)
{
    int ret = SEG::query(SEG::root[x][0],0,n,0,k);
    for(int i=x;nfa[i];i = nfa[i])
    {
        int du = q_dis(x,nfa[i]);
        ret += SEG::query(SEG::root[nfa[i]][0],0,n,0,k - du);
        ret -= SEG::query(SEG::root[i][1],0,n,0,k - du);        
    }return ret;
}
inline void update(int x,int k)
{
    int delt = k - SEG::query(SEG::root[x][0],0,n,0,0);
    SEG::Insert(SEG::root[x][0],0,n,0,delt);
    for(int i=x;nfa[i];i = nfa[i])
    {
        int du = q_dis(x,nfa[i]);
        SEG::Insert(SEG::root[nfa[i]][0],0,n,du,delt);
        SEG::Insert(SEG::root[i][1],0,n,du,delt);
    }
}
int main()
{
    //freopen("1.in","r",stdin);
    //freopen("1w.out","w",stdout);
    n = read(),m = read();
    for(int i=1;i<=n;i++)v[i] = read();
    for(int i=2;i<=n;i++)
    {
        int u = read(),v = read();
        ins(u,v);
    }LCA::dfs1(1);LCA::dfs2(1,1);
    f[0] = son = n;
    getroot(1,0);work(root);
    while(m--)
    {
        int opt = read(),x = read() ^ lastans,y = read() ^ lastans;
        if(opt)update(x,y);
        else printf("%d\n",lastans = query(x,y));
    }
}
View Code

 

转载于:https://www.cnblogs.com/Kong-Ruo/p/9913848.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值