【Python爬虫实战项目】Python爬取Top100电影榜单数据并保存csv文件

前言

今天给大家介绍的是Python爬取Top100电影榜单数据保存csv文件,在这里给需要的小伙伴们帮助,并且给出一点小心得。

电影top!

开发工具

Python版本: 3.6

相关模块:

requests模块

time模块

parsel模块

csv模块

环境搭建

安装Python并添加到环境变量,pip安装需要的相关模块即可。

文中完整代码及文件,评论留言获取

思路分析

浏览器中打开我们要爬取的页面 按F12进入开发者工具,查看我们想要的Top100电影榜单数据在哪里 这里我们需要页面数据就可以了

页面数据

代码实现

for page in range(0, 101, 10):
    time.sleep(2)
    url = 'https://maoyan.com/board/4?offset={}'.format(page)
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36',
        'Cookie': '__mta=20345351.1670903159717.1670903413872.1670903436333.5; uuid_n_v=v1; uuid=A8065B807A9811ED82C293D7E110319C9B09821067E1411AB6F4EC82889E1869; _csrf=916b8446658bd722f56f2c092eaae35ea3cd3689ef950542e202b39ddfe7c91e; Hm_lvt_703e94591e87be68cc8da0da7cbd0be2=1670903160; _lxsdk_cuid=1850996db5dc8-07670e36da28-26021151-1fa400-1850996db5d67; _lxsdk=A8065B807A9811ED82C293D7E110319C9B09821067E1411AB6F4EC82889E1869; __mta=213622443.1670903327420.1670903417327.1670903424017.4; Hm_lpvt_703e94591e87be68cc8da0da7cbd0be2=1670903436; _lxsdk_s=1850996db5e-8b2-284-88a%7C%7C18',
        'Host': 'www.maoyan.com',
        'Referer': 'https://www.maoyan.com/films/1200486'

    }
    response = requests.get(url, headers=headers)
    selector = parsel.Selector(response.text)
    li_s = selector.css('.board-wrapper dd')
    for li in li_s:
        name = li.css('.name a::text').get()
        star = li.css('.star::text').get()
        star_string = star.strip()
        releasetime = li.css('.releasetime::text').get()
        data_time = releasetime.strip()
        follow = li.css('.score i::text').getall()
        score = ''.join(follow)
        dit = {
            '电影名字': name,
            '主演': star_string,
            '上映时间': data_time,
            '评分': score,
        }
        csv_write.writerow(dit)
        print(dit)

Cookie获取

Cookie

效果展示

效果展示

总结

本篇介绍了主要使用 requests模块来请求数据,使用起来也是非常简单感兴趣的可以自己尝试一下。

---------------------------END---------------------------

题外话

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img

二、Python兼职渠道推荐*

学的同时助你创收,每天花1-2小时兼职,轻松稿定生活费.
在这里插入图片描述

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

img

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

若有侵权,请联系删除

好的,我了解了你的问题。首先,我们需要安装一些库,包括 requests, lxml 和 pandas: ```python import requests from lxml import etree import pandas as pd import threading ``` 然后,我们可以定义一个函数来获取每个页面的数据: ```python def get_data(page): url = f'https://book.douban.com/tag/%E6%B8%B8%E8%AE%B0?start={page*20}&type=T' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} r = requests.get(url, headers=headers) html = etree.HTML(r.text) books = html.xpath('//ul[@class="subject-list"]/li') data = [] for book in books: title = book.xpath('.//h2/a/text()')[0].strip() author = book.xpath('.//div[@class="pub"]/text()')[0].strip() publisher = book.xpath('.//div[@class="pub"]/text()')[1].strip() pub_date = book.xpath('.//div[@class="pub"]/text()')[2].strip() pages = book.xpath('.//div[@class="pub"]/text()')[3].strip() price = book.xpath('.//div[@class="pub"]/text()')[4].strip() isbn = book.xpath('.//div[@class="pub"]/text()')[5].strip() rating = book.xpath('.//span[@class="rating_nums"]/text()')[0] ratings = book.xpath('.//span[@class="pl"]/text()')[0] cover = book.xpath('.//img/@src')[0] link = book.xpath('.//h2/a/@href')[0] data.append([title, author, publisher, pub_date, pages, price, isbn, rating, ratings, cover, link]) return data ``` 接下来,我们可以使用多线程来加速爬取: ```python def crawl(pages): data = [] threads = [] for page in range(pages): t = threading.Thread(target=lambda d, p: d.extend(get_data(p)), args=(data, page)) t.start() threads.append(t) for t in threads: t.join() df = pd.DataFrame(data, columns=['书名', '作者', '出版社', '出版日期', '页数', '价格', 'ISBN', '豆瓣评分', '评价人数', '封面链接', '书籍链接']) df.sort_values(by='豆瓣评分', ascending=False, inplace=True) df.to_csv('游记.csv', index=False) ``` 最后,我们可以调用 crawl 函数并传入需要爬取的页面数: ```python crawl(10) ``` 这样,程序就可以爬取豆瓣读书网游记标签下前10页书籍的信息,并按照豆瓣评分降序保存到一个名为“游记.csv”的文件中了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值