分数规划

分数规划问题,是指这样一类问题:

要求f(x)/g(x)的最值,其中f(x),g(x)都是线性函数,而其中被研究的最多的是0-1分数规划,即求这样的一个式子的极值

r=(∑(ci*xi))/(∑(di*xi)),其中xi∈{0,1}

我们可以把这个式子变换一下

z=(∑(ci*xi))-r'*(∑(di*xi)),其中z是左边这个式子的最大(小)值

由于di为正数,xi为非负数,所以

r'>r 时 z(r')<0

r'=r 时 z(r')=0

r'<r 时 z(r')>0

易证z函数严格单调递减,那么我们可以二分r',直到z(r')=0,此时r'=r,问题得解

转载于:https://www.cnblogs.com/joeylee97/p/7349537.html

### Dinkelbach分数规划算法介绍 Dinkelbach分数规划算法是一种用于解决分数规划问题的有效方法。这类问题通常可以表示为最大化或最小化一个形如 \(f(x)/g(x)\) 的函数,其中 \(f\) 和 \(g\) 是定义在决策变量上的两个实数函数[^2]。 #### 定义与性质 对于给定的一个优化问题: \[ \max_{x}\frac{P(x)}{Q(x)} \] 这里 \(P(x)\) 和 \(Q(x)\) 都是非负的线性组合形式的目标函数。通过引入辅助参数 \(\lambda\) ,原问题被转换成一系列更简单的子问题来求解。具体来说,在每次迭代过程中调整 \(\lambda\) 值直到找到最优解为止。当满足一定条件时,即找到了使得目标表达式的分子部分等于零的最大可能值,则此时对应的 \(\lambda\) 即为我们所寻找的最佳比例因子[^1]。 #### 实现细节 由于使用此算法需要在不断迭代的过程中记录特定结构(例如负环),这增加了其实现难度;因此,在某些应用场景下可能会选择其他替代方案。然而,对于许多实际案例而言,只要实现了适当的数据结构支持以及高效的更新机制,仍然能够有效地利用该算法解决问题[^3]。 ```python def dinkelbach_algorithm(P, Q, epsilon=1e-9): lambda_ = 0 while True: prev_lambda = lambda_ # Solve the subproblem with current lambda value. solution = solve_subproblem(lambda_) numerator = P(solution) denominator = Q(solution) if abs(numerator / denominator - lambda_) < epsilon: break lambda_ = numerator / denominator return lambda_ def solve_subproblem(lambda_value): # Placeholder function representing solving a simpler problem based on given lambda. pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值