分数规划

分数规划问题,是指这样一类问题:

要求f(x)/g(x)的最值,其中f(x),g(x)都是线性函数,而其中被研究的最多的是0-1分数规划,即求这样的一个式子的极值

r=(∑(ci*xi))/(∑(di*xi)),其中xi∈{0,1}

我们可以把这个式子变换一下

z=(∑(ci*xi))-r'*(∑(di*xi)),其中z是左边这个式子的最大(小)值

由于di为正数,xi为非负数,所以

r'>r 时 z(r')<0

r'=r 时 z(r')=0

r'<r 时 z(r')>0

易证z函数严格单调递减,那么我们可以二分r',直到z(r')=0,此时r'=r,问题得解

转载于:https://www.cnblogs.com/joeylee97/p/7349537.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值