zabbix3.4安装

官方网站写的很详细:

https://www.zabbix.com/download?zabbix=3.0&os_distribution=centos&os_version=6&db=mysql

一.准备lnmp环境

参考:https://www.cnblogs.com/wujuntian/p/8183952.html

https://blog.csdn.net/u012899746/article/details/80691777

 

二.根据官网,yum安装zabbix-server

在官网的DOWNLOAD页面,选择要安装的zabbix-server版本,还有操作系统、数据库的信息,然后按照提示进行Yum安装。

可参考:https://www.zabbix.com/download?zabbix=3.0&os_distribution=centos&os_version=6&db=mysql

 

三.启动服务

service zabbix-server restart

 

四.在WEB界面,对zabbix进行配置

1.     http://192.168.60.130:85/zabbix/setup.php

 

2.检查zabbix-server的配置

 

3.配置数据库信息

 

4.服务端配置

 

5.安装

正常情况下,会一步到底,但是我们这里遇到个问题,无法创建配置文件

解决办法已经写得很清楚了,下载配置文件,然后传到服务端指定的目录下即可

 

6.登录 

注:登录的时候要使用Admin用户来登录,在数据库中可以发现,Admin其实是一个别名,你如果使用Zabbix用户来登录的话,会提示你帐号或密码错误的。

 

七.注意事项:

1.在zabbix配置文件中,最好指定mysql的mysql.sock文件的位置,否则的话会出现各种问题

vim /etc/zabbix/zabbix_server.conf

这个文件要根据真是真实环境中文件所在路径来配。

 

转载于:https://www.cnblogs.com/Jackie-Chen/articles/10809868.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值