洛谷 P1044 栈

洛谷 P1044 栈

题目:

题解:

  • 这是一道卡特兰数
  • 具体推导过程:
  • 设dp[i]为有i个数时的方案数。设x为最后出栈的一个元素,则已经出栈的元素中比x大的元素个数为n-x个,比x小的元素个数为x-1个。那么每部分的方案数分别为dp[n - x]、dp[x - 1]。因为它们两部分互相影响,是一个乘法原理。那么当i=n时,dp[n] = ?因为x可以在1到n中取值,所以总的方案数dp[n] = dp[0] * dp[n - 1] + dp[1] * dp[n - 2] + ... + dp[n - 1] * dp[0]
#include <iostream>
#include <cstdio>
using namespace std;

int n;
int f[20];

int main()
{
    cin >> n;
    f[0] = f[1] = 1;
    for(int i = 2; i <= n; i++)
        for(int j = 0; j < i; j++)
            f[i] += f[j] * f[i - j - 1];
    cout << f[n];
    return 0;
}

转载于:https://www.cnblogs.com/BigYellowDog/p/11161687.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值