【BZOJ】1109: [POI2007]堆积木Klo

题意

\(n(1 \le n \le 100000)\)个数放在一排,可以一走一些数(后面的数向前移),要求最大化\(a_i=i\)的数目。

分析

分析容易得到一个dp方程。

题解

\(d(i)\)表示前\(i\)个数且第\(i\)个数放在\(a_i\)位置的最大答案,则\(d(i) = max(d(j)+1) (j < i, a_j < a_i, j - a_j \le i-a_i)\),发现是一个三维偏序。然而这个三维偏序是可以变成二维偏序的。
由于\(j-a_j \le i-a_i, a_j < a_i\)就可以推出\(j < i\),所以我们求这个二维偏序集的最大链就行了。

#include <bits/stdc++.h>
using namespace std;
inline int getint() {
    int x=0, c=getchar();
    for(; c<48||c>57; c=getchar());
    for(; c>47&&c<58; x=x*10+c-48, c=getchar());
    return x;
}
int c[200005], mx, n, tot;
void upd(int x, int g) {
    for(; x<=mx; x+=x&-x) {
        c[x]=max(c[x], g);
    }
}
int sum(int x) {
    int y=0;
    for(; x; x-=x&-x) {
        y=max(y, c[x]);
    }
    return y;
}
struct dat {
    int i, a;
}a[100005];
inline bool cmp(const dat &a, const dat &b) {
    return a.i==b.i?a.a<b.a:a.i<b.i;
}
int main() {
    n=getint();
    for(int i=1; i<=n; ++i) {
        int w=getint();
        if(i<w) {
            continue;
        }
        ++tot;
        a[tot].i=i-w;
        a[tot].a=w;
        mx=max(mx, w);
    }
    sort(a+1, a+1+tot, cmp);
    mx=min(mx, 2*n);
    int ans=0;
    for(int i=1; i<=tot; ++i) {
        int d=1+sum(a[i].a-1);
        upd(a[i].a, d);
        ans=max(ans, d);
    }
    printf("%d\n", ans);
    return 0;
}

转载于:https://www.cnblogs.com/iwtwiioi/p/4985645.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值