【BZOJ5073】[Lydsy十月月赛]小A的咒语
题解:沙茶DP,完全不用后缀数组。
用f[i][j]表示用了A的前i个字符,用了j段,最远能匹配到哪。因为显然我们能匹配到的地方越远越好,所以我们直接判断A[i]和B[f[i][j]]是否相等,如果相等则转移下去。还要记录g[i][j]表示第i个字符匹配成功时最远能匹配到哪,这样f数组可以求前缀最大值,但要从j转移到j+1,而g数组可以从j转移到j。
P.S:贪心策略好像有bug。。。大家还是写后缀数组吧。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=100010;
int n,m,K,T,ans;
char s1[maxn],s2[maxn];
int f[maxn][110],g[maxn][110];
void work()
{
scanf("%d%d%d%s%s",&n,&m,&K,s1,s2),ans=0;
int i,j;
memset(f,0,sizeof(f)),memset(g,0xc0,sizeof(g));
for(i=0;i<n;i++)
{
for(j=0;j<=K;j++)
{
if(f[i][j]==m||g[i][j]==m)
{
printf("YES\n");
return ;
}
f[i][j]=max(f[i][j],g[i][j]);
if(s1[i]==s2[f[i][j]]) g[i+1][j+1]=max(g[i+1][j+1],f[i][j]+1);
if(g[i][j]>=0&&s1[i]==s2[g[i][j]]) f[i+1][j+1]=max(f[i+1][j+1],g[i][j]+1),g[i+1][j]=max(g[i+1][j],g[i][j]+1);
f[i+1][j]=max(f[i+1][j],f[i][j]);
}
}
for(j=0;j<=K;j++) if(f[n][j]==m||g[n][j]==m)
{
printf("YES\n");
return ;
}
printf("NO\n");
}
int main()
{
scanf("%d",&T);
while(T--) work();
return 0;
}//1 9 6 3 hloyaygrt loyyrt