【BZOJ3195】[Jxoi2012]奇怪的道路 状压DP

【BZOJ3195】[Jxoi2012]奇怪的道路

Description

小宇从历史书上了解到一个古老的文明。这个文明在各个方面高度发达,交通方面也不例外。考古学家已经知道,这个文明在全盛时期有n座城市,编号为1..n。m条道路连接在这些城市之间,每条道路将两个城市连接起来,使得两地的居民可以方便地来往。一对城市之间可能存在多条道路。
据史料记载,这个文明的交通网络满足两个奇怪的特征。首先,这个文明崇拜数字K,所以对于任何一条道路,设它连接的两个城市分别为u和v,则必定满足1 <=|u - v| <= K。此外,任何一个城市都与恰好偶数条道路相连(0也被认为是偶数)。不过,由于时间过于久远,具体的交通网络我们已经无法得知了。小宇很好奇这n个城市之间究竟有多少种可能的连接方法,于是她向你求助。
方法数可能很大,你只需要输出方法数模1000000007后的结果。

Input

输入共一行,为3个整数n,m,K。

Output

输出1个整数,表示方案数模1000000007后的结果。

Sample Input

【输入样例1】
3 4 1
【输入样例2】
4 3 3

Sample Output

【输出样例1】
3
【输出样例2】
4
【数据规模】

HINT

100%的数据满足1<= n <= 30, 0 <= m <= 30, 1 <= K <= 8.
【题目说明】
两种可能的连接方法不同当且仅当存在一对城市,它们间的道路数在两种方法中不同。
在交通网络中,有可能存在两个城市无法互相到达。

题解:容易想到用状压DP,不过循环顺序是一件捉鸡的事情。

用f[i][j][S]表示前i个城市,建了j条道路,最后k个城市的度数奇偶性状态为S的方案数。那么转移的时候,我们枚举每条边重复连多少次,如果连奇数条,则状态改变;如果连偶数次,则状态不变,我们可以对于j为奇数和j为偶数的情况都维护一个前缀和来优化转移。

为了防止重复,我们需要注意循环顺序,先枚举边,然后倒着枚举边数,最后枚举状态。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int P=1000000007;
int n,m,K,ans;
int f[32][32][1<<9],s[32][32][1<<9],cnt[1<<9];
inline void updata(int &x,int y)
{
	x=(x+y)%P;
}
int main()
{
	scanf("%d%d%d",&n,&m,&K),K++;
	int i,j,k,l;
	for(i=1;i<(1<<K);i++)	cnt[i]=cnt[i-(i&-i)]+1;
	f[1][0][0]=1;
	for(i=1;i<=n;i++)
	{
		for(j=0;j<=m;j++)	for(k=0;k<(1<<K);k++)
		{
			s[i][j][k]=f[i][j][k];
			if(j>1)	updata(s[i][j][k],s[i][j-2][k]);
		}
		for(l=1;l<min(i,K);l++)
		{
			for(j=m;j;j--)	for(k=0;k<(1<<K);k++)
			{
				updata(f[i][j][k],s[i][j-1][k^1^(1<<l)]);
				if(j>1)	updata(f[i][j][k],s[i][j-2][k]);
			}
			for(j=0;j<=m;j++)	for(k=0;k<(1<<K);k++)
			{
				s[i][j][k]=f[i][j][k];
				if(j>1)	updata(s[i][j][k],s[i][j-2][k]);
			}
		}
		for(j=0;j<=m;j++)	for(k=0;k<(1<<(K-1));k++)	updata(f[i+1][j][k<<1],f[i][j][k]);
	}
	printf("%d",f[n][m][0]);
	return 0;
}

转载于:https://www.cnblogs.com/CQzhangyu/p/7812821.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值