【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP

【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡!

Description

最近《绝地求生:大逃杀》风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏。在游戏中,皮皮和毛毛最喜欢做的事情就是堵桥,每每有一个好时机都能收到不少的快递。当然,有些时候并不能堵桥,皮皮和毛毛会选择在其他的必经之路上蹲点。K博士作为一个老年人,外加有心脏病,自然是不能玩这款游戏的,但是这并不能妨碍他对这款游戏进行一些理论分析,比如最近他就对皮皮和毛毛的战士很感兴趣。【题目描述】游戏的地图可以抽象为一张n个点m条无向边的图,节点编号为1到n,每条边具有一个正整数的长度。假定大魔王都会从S点出发到达T点(S和T已知),并且只会走最短路,皮皮和毛毛会在A点和B点埋伏大魔王。
为了保证一定能埋伏到大魔王,同时又想留大魔王一条生路,皮皮和毛毛约定A点和B点必须满足:
1.大魔王所有可能路径中,必定会经过A点和B点中的任意一点
2.大魔王所有可能路径中,不存在一条路径同时经过A点和B点
K博士想知道,满足上面两个条件的A,B点对有多少个,交换A,B的顺序算相同的方案

Input

第一行输入四个整数n,m,S,T(1≤n≤5×10^4,1≤m≤5×10^4,1≤S,T≤n),含义见题目描述。
接下来输入m行,每行输入三个整数u,v,w(1≤u,v≤n,1≤w≤10^9)表示存在一条长度为w的边链接u和v。
1≤n≤5×10^4,1≤m≤5×10^4,1≤w≤10^9

Output

输出一行表示答案

Sample Input

7 7 1 7
1 2 2
2 4 2
4 6 2
6 7 2
1 3 2
3 5 4
5 7 2

Sample Output

6
【样例 1 解释】
合法的方案为 < 2, 3 >, < 2, 4 >, < 4, 3 >, < 4, 5 >, < 6, 3 >, < 6, 5 > 。

题解:第一思路是先随便找出一条最短路,那么最终的A点和B点一定有一个在这条最短路上,我们设在路径上的是A。于是我们枚举所有点B,考虑它可以搭配哪些合法的点A。 不难发现,为了满足条件2,可以选择的点A一定在一段区间中(如果能从B走到A,那么B也一定能走到A后面的点;如果A能走到B,那么A前面的点也一定能走到B),我们可以先求出最短路径图,然后在正图和反图上分别跑拓扑排序+DP,就能得出每个B的合法A区间。

那么条件1如何满足呢?我们可以用拓扑排序求出经过点i的最短路径条数f[i],那么如果A和B满足条件1,等价于f[A]+f[B]=f[T],所以我们可以采用差分的方式,将每个B的f值扔到对应的A区间中,然后枚举所有A,用map维护当前有多少个点的f值等于一个数,每枚举到一个A就查询一下有多少个点的f等于f[T]-f[A]即可。不过f值可能很大,我们可以采用取模的方式,如果感觉还是很虚的话,可以多取几个模数(本人取了两个)。

但是,考试时写了一发只有55分,为什么?45分的数据S和T都不连通,此时要输出$C_n^2$!输出$C_n^2$能得45分也就算了,我后来check了一下数据,发现所有图都是随机的,所有数据中从S到T的最短路最多只有1条!所以呢,本题其实只需要先特判S和T是否连通,若不连通则输出$C_n^2$,否则随便找一条S到T的最短路,设路径上的点数为len,输出len*(n-len)即能得到满分。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <utility>
#include <map>
#include <vector>
#define mp(A,B) make_pair(A,B)
using namespace std;
typedef long long ll;
const int maxn=50010;
const ll P1=998244353;
const ll P2=1000000007;
int n,m,cnt,len,S,T;
ll ans;
struct node
{
	ll x,y;
	node() {}
	node(ll a,ll b) {x=a,y=b;}
	node operator + (const node &a) const {return node((x+a.x)%P1,(y+a.y)%P2);}
	node operator * (const node &a) const {return node(x*a.x%P1,y*a.y%P2);}
	node operator - (const node &a) const {return node((x-a.x+P1)%P1,(y-a.y+P2)%P2);}
	bool operator < (const node &a) const {return (x==a.x)?(y<a.y):(x<a.x);}
}f1[maxn],f2[maxn],f[maxn];
priority_queue<pair<ll,int> > pq;
queue<int> q;
int to[maxn<<1],next[maxn<<1],head[maxn],vis[maxn],d[maxn],pre[maxn],lm[maxn],rm[maxn],p[maxn];
//l正r反
ll val[maxn<<1],s1[maxn],s2[maxn];
map<node,int> s;
vector<node>::iterator it;
vector<node> p1[maxn],p2[maxn];
inline int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<'0'||gc>'9')	{if(gc=='-')	f=-f;	gc=getchar();}
	while(gc>='0'&&gc<='9')	ret=ret*10+(gc^'0'),gc=getchar();
	return ret*f;
}
inline void add(int a,int b,int c)
{
	to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
int main()
{
	//freopen("7.in","r",stdin);
	n=rd(),m=rd(),S=rd(),T=rd();
	int i,j,a,b,c,u,v;
	memset(head,-1,sizeof(head)),memset(s1,0x3f,sizeof(s1)),memset(s2,0x3f,sizeof(s2));
	for(i=1;i<=m;i++)	a=rd(),b=rd(),c=rd(),add(a,b,c),add(b,a,c);
	s1[S]=0,pq.push(mp(0,S));
	while(!pq.empty())
	{
		u=pq.top().second,pq.pop();
		if(vis[u])	continue;
		vis[u]=1;
		for(i=head[u];i!=-1;i=next[i])	if(s1[to[i]]>s1[u]+val[i])
			s1[to[i]]=s1[u]+val[i],pq.push(mp(-s1[to[i]],to[i]));
	}
	if(s1[T]==0x3f3f3f3f3f3f3f3fll)
	{
		printf("%lld",(ll)n*(n-1)/2);
		return 0;
	}
	s2[T]=0,pq.push(mp(0,T)),memset(vis,0,sizeof(vis));
	while(!pq.empty())
	{
		u=pq.top().second,pq.pop();
		if(vis[u])	continue;
		vis[u]=1;
		for(i=head[u];i!=-1;i=next[i])	if(s2[to[i]]>s2[u]+val[i])
			s2[to[i]]=s2[u]+val[i],pre[to[i]]=u,pq.push(mp(-s2[to[i]],to[i]));
	}
	for(i=S;i;i=pre[i])	p[++len]=i,lm[i]=len+1,rm[i]=len-1;
	for(i=1;i<=n;i++)	if(!lm[i])	lm[i]=1,rm[i]=len;
	for(i=1;i<=n;i++)	for(j=head[i];j!=-1;j=next[j])	if(val[j]>0&&s1[i]+s2[to[j]]+val[j]==s1[T])
		val[j]=-1,val[j^1]=-2,d[to[j]]++;
	for(i=1;i<=n;i++)	if(!d[i])	q.push(i);
	f1[S]=node(1,1),f2[T]=node(1,1);
	while(!q.empty())
	{
		u=q.front(),q.pop();
		for(i=head[u];i!=-1;i=next[i])	if(val[i]==-1)
		{
			v=to[i],d[v]--,f1[v]=f1[v]+f1[u],lm[v]=max(lm[v],lm[u]);
			if(!d[v])	q.push(v);
		}
	}
	for(i=1;i<=n;i++)	for(j=head[i];j!=-1;j=next[j])	if(val[j]==-2)	d[to[j]]++;
	for(i=1;i<=n;i++)	if(!d[i])	q.push(i);
	while(!q.empty())
	{
		u=q.front(),q.pop();
		for(i=head[u];i!=-1;i=next[i])	if(val[i]==-2)
		{
			v=to[i],d[v]--,f2[v]=f2[v]+f2[u],rm[v]=min(rm[v],rm[u]);
			if(!d[v])	q.push(v);
		}
	}
	for(i=1;i<=n;i++)
	{
		f[i]=f1[i]*f2[i];
		if(lm[i]<=rm[i])	p1[lm[i]].push_back(f[i]),p2[rm[i]].push_back(f[i]);
	}
	for(i=1;i<=len;i++)
	{
		for(it=p1[i].begin();it!=p1[i].end();it++)	s[*it]++;
		ans+=s[f[T]-f[p[i]]];
		for(it=p2[i].begin();it!=p2[i].end();it++)	s[*it]--;
	}
	printf("%lld",ans);
	return 0;
}

转载于:https://www.cnblogs.com/CQzhangyu/p/7905974.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值