【BZOJ4145】[AMPPZ2014]The Prices
Description
你要购买m种物品各一件,一共有n家商店,你到第i家商店的路费为d[i],在第i家商店购买第j种物品的费用为c[i][j],
求最小总费用。
Input
第一行包含两个正整数n,m(1<=n<=100,1<=m<=16),表示商店数和物品数。
接下来n行,每行第一个正整数d[i](1<=d[i]<=1000000)表示到第i家商店的路费,接下来m个正整数,
依次表示c[i][j](1<=c[i][j]<=1000000)。
Output
一个正整数,即最小总费用。
Sample Input
3 4
5 7 3 7 9
2 1 20 3 2
8 1 20 1 1
5 7 3 7 9
2 1 20 3 2
8 1 20 1 1
Sample Output
16
HINT
在第一家店买2号物品,在第二家店买剩下的物品。
题解:看到数据范围先想到费用流,发现费用流写不出来只好改写状压
设当前枚举到第i个商店,用f[k]表示逛了第i个商店,所买物品状态为j的最小花费,用g[k]表示在前i个商店中,所买物品状态为j的最小花费,然后慢慢转移吧~
时间复杂度O(nm*2^m)
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
int n,m;
int c[110][20],d[110],f[1<<16],g[1<<16];
int min(int x,int y,int z)
{
return min(min(x,y),z);
}
int main()
{
scanf("%d%d",&n,&m);
int i,j,k;
for(i=1;i<=n;i++)
{
scanf("%d",&d[i]);
for(j=1;j<=m;j++) scanf("%d",&c[i][j]);
}
memset(g,0x3f,sizeof(g));
g[0]=0;
for(i=1;i<=n;i++)
{
memset(f,0x3f,sizeof(f));
f[0]=d[i];
for(k=1;k<(1<<m);k++)
{
for(j=1;j<=m;j++)
{
if(k&(1<<j-1))
f[k]=min(f[k],g[k^(1<<j-1)]+d[i]+c[i][j],f[k^(1<<j-1)]+c[i][j]);
}
g[k]=min(g[k],f[k]);
}
}
printf("%d",g[(1<<m)-1]);
return 0;
}