【BZOJ3527】[Zjoi2014]力 FFT

【BZOJ3527】[Zjoi2014]力

Description

给出n个数qi,给出Fj的定义如下:
令Ei=Fi/qi,求Ei.

Input

第一行一个整数n。
接下来n行每行输入一个数,第i行表示qi。
n≤100000,0<qi<1000000000

Output

 n行,第i行输出Ei。与标准答案误差不超过1e-2即可。

Sample Input

5
4006373.885184
15375036.435759
1717456.469144
8514941.004912
1410681.345880

Sample Output

-16838672.693
3439.793
7509018.566
4595686.886
10903040.872

题解:对于上面的式子,我们将i<j和i>j分开计算

(感觉并没有推什么)

然后上面那个本身就是一个卷积,下面那个跟快速傅里叶之二一样,反转过来也是一个卷积,用FFT算出来后相减即可

#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
#define pi acos(-1.0)
#define z z
using namespace std;
struct cp
{
	double x,y;
	cp (double a,double b){x=a,y=b;	}
	cp (){}
	cp operator + (cp a){return cp(x+a.x,y+a.y);}
	cp operator - (cp a){return cp(x-a.x,y-a.y);}
	cp operator * (cp a){return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
}n1[1<<20],n2[1<<20];
double q[1<<20],a1[1<<20],a2[1<<20];
int n;
void init(cp *a,int len)
{
	int i,j,t=0;
	for(i=0;i<len;i++)
	{
		if(i>t)	swap(a[i],a[t]);
		for(j=(len>>1);(t^=j)<j;j>>=1);
	}
}
void FFT(cp *a,int len,int f)
{
	init(a,len);
	int i,j,k,h;
	cp t;
	for(h=2;h<=len;h<<=1)
	{
		cp wn=cp(cos(f*2*pi/h),sin(f*2*pi/h));
		for(j=0;j<len;j+=h)
		{
			cp w(1,0);
			for(k=j;k<j+h/2;k++)
				t=w*a[k+h/2],a[k+h/2]=a[k]-t,a[k]=a[k]+t,w=w*wn;
		}
	}
}
void work(cp *a,cp *b,double *c,int len)
{
	FFT(a,len,1),FFT(b,len,1);
	for(int i=0;i<len;i++)	a[i]=a[i]*b[i];
	FFT(a,len,-1);
	for(int i=0;i<len;i++)	c[i]=a[i].x/len;
}
int main()
{
	scanf("%d",&n);
	int i,j,len=1;
	while(len<2*n)	len<<=1;
	for(i=0;i<n;i++)	scanf("%lf",&q[i]);
	for(i=0;i<n;i++)	n1[i]=cp(q[i],0.0),n2[i]=cp(1.0/(i+1)/(i+1),0.0);
	for(i=n;i<len;i++)	n1[i]=cp(0.0,0.0),n2[i]=cp(0.0,0.0);
	work(n1,n2,a1,len);
	for(i=0;i<n;i++)	n1[i]=cp(q[n-i-1],0.0),n2[i]=cp(1.0/(i+1)/(i+1),0.0);
	for(i=n;i<len;i++)	n1[i]=cp(0.0,0.0),n2[i]=cp(0.0,0.0);
	work(n1,n2,a2,len);
	printf("%.3f\n",-a2[n-2]);
	for(i=1;i<n-1;i++)	printf("%.3f\n",a1[i-1]-a2[n-i-2]);
	printf("%.3f\n",a1[n-2]);
	return 0;
}

转载于:https://www.cnblogs.com/CQzhangyu/p/6878518.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值