给一个 N * N 的矩阵,多次询问子矩阵第 K 小
整体二分的经典题。
单个询问显然可以二分,用树状数组维护子矩阵中大小 <= mid 的数的个数。
多个询问就把它们同时二分,答案 <= mid 的询问丢到左边,> mid 的丢到右边递归处理。
二分的时候就直接在矩阵里的数中二分。
时间复杂度上来说对于每一层二分,每个数最多被加入树状数组一次,每个询问也最多被处理一次,一共有 log N 层。
时间复杂度为 O( ( N2 + Q ) log3 N ),有一些小细节和小技巧在代码里体现。
1 #include<bits/stdc++.h> 2 #define rep(i,a,b) for(register int i=a;i<=b;++i) 3 #define rpd(i,a,b) for(register int i=a;i>=b;--i) 4 #define rep1(i,x) for(register int i=head[x];i;i=nxt[i]) 5 typedef long long ll; 6 const int N=500+5,Q=60000+5; 7 using namespace std; 8 inline int read(){ 9 int x=0,f=1;char ch=getchar(); 10 while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();} 11 while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();} 12 return x*f; 13 } 14 int n,q,m;int t1[Q],t2[Q],ans[Q],id[Q],C[N][N]; 15 int lowbit(int x){return x&(-x);} 16 void add(int x,int y,int opt){for(int i=x;i<=n;i+=lowbit(i))for(int j=y;j<=n;j+=lowbit(j))C[i][j]+=opt;} 17 int find(int x,int y){int sum=0;for(int i=x;i;i-=lowbit(i))for(int j=y;j;j-=lowbit(j))sum+=C[i][j];return sum;} 18 int ask(int x,int y,int xx,int yy){return find(xx,yy)-find(xx,y-1)-find(x-1,yy)+find(x-1,y-1);} 19 struct Matrix{int i,j,x;}t[N*N]; 20 bool cmp(Matrix i,Matrix j){return i.x<j.x;} 21 struct Query{int x,y,xx,yy,k;}a[Q]; 22 void work(int l,int r,int L,int R){ 23 if(L>R)return; 24 if(l==r){rep(i,L,R)ans[id[i]]=t[l].x;return;} 25 int mid=l+r>>1,cnt1=0,cnt2=0; 26 rep(i,l,mid)add(t[i].i,t[i].j,1); 27 rep(i,L,R){ 28 int now=id[i],nowk=ask(a[now].x,a[now].y,a[now].xx,a[now].yy); 29 if(nowk>=a[now].k)t1[++cnt1]=now; 30 else t2[++cnt2]=now,a[now].k-=nowk; 31 } 32 int nowl=L-1; 33 rep(i,1,cnt1)id[++nowl]=t1[i]; 34 rep(i,1,cnt2)id[++nowl]=t2[i]; 35 rep(i,l,mid)add(t[i].i,t[i].j,-1); 36 work(l,mid,L,L+cnt1-1); 37 work(mid+1,r,L+cnt1,R); 38 } 39 int main(){ 40 n=read();q=read(); 41 rep(i,1,n)rep(j,1,n)t[++m]=(Matrix){i,j,read()}; 42 sort(t+1,t+m+1,cmp); 43 rep(i,1,q)a[i]=(Query){read(),read(),read(),read(),read()}; 44 rep(i,1,q)id[i]=i;work(1,m,1,q); 45 rep(i,1,q)printf("%d\n",ans[i]); 46 //system("pause"); 47 return 0; 48 }