其实这个题是抄的题解啦…… 题解给了一个图,按照那个图模拟一遍大概就能理解了。
题意:
有一段程序,给你一个C值(程序中某常量),让你构造一组数据,使程序输出"doge"
那段代码大概是 SPFA的SLF优化。其实题目的意思是让我们构造一组数据,使得总的出队次数大于C。
数据范围 C<=23,333,333。输出的图中最多有100个点,没有重边、自环、负环。
思路:
SLF: 设队首元素为 i, 队列中要加入节点 j, 在 时加到队首而不是队尾, 否则和普通的 SPFA 一样加到队尾.
这个优化是基于贪心的思想,因为出当前结点的的距离越小,那么他可能更新点就越多,从而达到优化的目的。
因为是贪心,我们可以“欺骗”他一下。
我们可以让距离比较大的结点加入队列,那么他会比较晚出队,但是,他会经过一系列的会更新原来更新过的结点,那么被更新的点会重新入队。那么被更新点原来的更新路径会重新被更新一次。
题解:来自这里
代码: 先在程序中把图建出来,然后在输出图。这样做会简单一些。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <cmath> 6 #include <algorithm> 7 #include <string> 8 #include <queue> 9 #include <stack> 10 #include <vector> 11 #include <map> 12 #include <set> 13 #include <functional> 14 #include <time.h> 15 16 using namespace std; 17 18 const int INF = 1<<30; 19 const int MAXN = 105; 20 21 int myPow(int d, int n) { 22 int res = 1; 23 while (n>0) { 24 if (n&1) res *= d; 25 d *= d; 26 n >>= 1; 27 } 28 return res; 29 } 30 31 vector<pair<int, int> > G[MAXN]; 32 int n, m; 33 34 void getGraph() { 35 for (int i = 0; i < MAXN; i++) 36 G[i].clear(); 37 n = 1; 38 for (int i = 30; i >= 0; i--) { 39 G[n].push_back(make_pair(n+1, 0)); 40 G[n].push_back(make_pair(n+2, (i!=0) ? (-myPow(2, i-1)) : 0)); 41 G[n+1].push_back(make_pair(n+2, -myPow(2, i))); 42 n += 2; 43 } 44 m = 0; 45 for (int i = 1; i <= n; i++) 46 m += G[i].size(); 47 } 48 49 void output() { 50 printf("%d %d\n", n, m); 51 for (int i = 1; i <= n; i++) 52 for (int j = 0; j < G[i].size(); j++) 53 printf("%d %d %d\n", i, G[i][j].first, G[i][j].second); 54 55 } 56 57 int main() { 58 #ifdef Phantom01 59 freopen("HDU4889.txt", "r", stdin); 60 #endif //Phantom01 61 62 getGraph(); 63 int C; 64 while (scanf("%d", &C)!=EOF) { 65 output(); 66 } 67 68 return 0; 69 }