[是题解哦] 洛谷 P1865 A % B Problem

题目链接

这里这里

 

题目背景

题目名称是吸引你点进来的

实际上该题还是很水的

 

题目描述

区间质数个数

 

输入输出格式

输入格式:

一行两个整数 询问次数n,范围m

接下来n行,每行两个整数 l,r 表示区间

输出格式:

对于每次询问输出个数 t,如l或r∉[1,m]输出 Crossing the line

 

说明

【数据范围和约定】

对于20%的数据 1<=n<=10 1<=m<=10

对于100%的数据 1<=n<=1000 1<=m<=1000000 -10^9<=l<=r<=10^9 1<=t<=1000000

 

题解

由于涉及到区间查询操作,这道题我使用埃筛+线段树来做

我使用毒瘤的动态开点的方式进行建树操作

首先在建树前进行一次筛选,得到一张质数表,再根据质数表建树,如下

 1 void GetList(int m){
 2     for(int i=2;i<=m;i++)
 3         Prime[i]=true;
 4     Prime[0]=false;
 5     Prime[1]=false;
 6     for(int i=2;i<=m;i++){
 7         if(!Prime[i])
 8             continue;
 9         else
10             for(int j=i*2;j<=m;j+=i)
11                 Prime[j]=false;
12     }
13 }
14 
15 void Build(int &now,int l,int r,int x,int k){
16     if(now==0)
17         now=++cnt;
18     if(l==r){
19         Seg[now].sum=k;
20         return;
21     }
22     int mid=(l+r)>>1;
23     if(x<=mid)
24         Build(Seg[now].L,l,mid,x,k);
25     else
26         Build(Seg[now].R,mid+1,r,x,k);
27     Seg[now].sum=Seg[Seg[now].L].sum+Seg[Seg[now].R].sum;
28 }
29 
30     GetList(m);
31     for(int i=1;i<=m;i++)
32         if(Prime[i]==true)
33             Build(root,1,m,i,1);//如果是质数,就把该点标记为1
34         else
35             Build(root,1,m,i,0);//如果不是质数,就标记为0

建树时这样操作,查询就可以和普通的线段树一样维护了

下面是完整代码

 1 #include<iostream>
 2 #include<cstdio>
 3 using namespace std;
 4 
 5 struct node{
 6     int sum;
 7     int L;
 8     int R;
 9 }Seg[4000010];
10 int root,cnt,n,m;
11 bool Prime[1000010];
12 
13 void GetList(int m){
14     for(int i=2;i<=m;i++)
15         Prime[i]=true;
16     Prime[0]=false;
17     Prime[1]=false;
18     for(int i=2;i<=m;i++){
19         if(!Prime[i])
20             continue;
21         else
22             for(int j=i*2;j<=m;j+=i)
23                 Prime[j]=false;
24     }
25 }
26 
27 void Build(int &now,int l,int r,int x,int k){
28     if(now==0)
29         now=++cnt;
30     if(l==r){
31         Seg[now].sum=k;
32         return;
33     }
34     int mid=(l+r)>>1;
35     if(x<=mid)
36         Build(Seg[now].L,l,mid,x,k);
37     else
38         Build(Seg[now].R,mid+1,r,x,k);
39     Seg[now].sum=Seg[Seg[now].L].sum+Seg[Seg[now].R].sum;
40 }
41 
42 int Query(int now,int l,int r,int x,int y){
43     if(x<=l && r<=y)
44         return Seg[now].sum;
45     int mid=(l+r)>>1;
46     int sumL=0,sumR=0;
47     if(x<=mid)
48         sumL+=Query(Seg[now].L,l,mid,x,y);
49     if(y>mid)
50         sumR+=Query(Seg[now].R,mid+1,r,x,y);
51     return sumL+sumR;
52 }
53 
54 int main(){
55     scanf("%d%d",&n,&m);
56     GetList(m);
57     for(int i=1;i<=m;i++)
58         if(Prime[i]==true)
59             Build(root,1,m,i,1);
60         else
61             Build(root,1,m,i,0);
62     for(int i=1;i<=n;i++){
63         register int p,q;
64         scanf("%d%d",&p,&q);
65         if(p<1 || p>m || q<1 || q>m)
66             printf("Crossing the line\n");
67         else
68             printf("%d\n",Query(root,1,m,p,q));
69     }
70     return 0;
71 }


友情链接:安利一只小姐姐的博客

 

转载于:https://www.cnblogs.com/tatarakogasa/p/9782870.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值