Redis缓存穿透、缓存雪崩、redis并发问题分析

把redis作为缓存使用已经是司空见惯,但是使用redis后也可能会碰到一系列的问题,尤其是数据量很大的时候,经典的几个问题如下:

(一)缓存和数据库间数据一致性问题
分布式环境下(单机就不用说了)非常容易出现缓存和数据库间的数据一致性问题,针对这一点的话,只能说,如果你的项目对缓存的要求是强一致性的,那么请不要使用缓存。我们只能采取合适的策略来降低缓存和数据库间数据不一致的概率,而无法保证两者间的强一致性。合适的策略包括 合适的缓存更新策略,更新数据库后要及时更新缓存、缓存失败时增加重试机制,例如MQ模式的消息队列。

(二)缓存击穿问题
缓存击穿表示恶意用户模拟请求很多缓存中不存在的数据,由于缓存中都没有,导致这些请求短时间内直接落在了数据库上,导致数据库异常。这个我们在实际项目就遇到了,有些抢购活动、秒杀活动的接口API被大量的恶意用户刷,导致短时间内数据库c超时了,好在数据库是读写分离,同时也有进行接口限流,hold住了。

解决方案的话:

方案1、使用互斥锁排队

业界比价普遍的一种做法,即根据key获取value值为空时,锁上,从数据库中load数据后再释放锁。若其它线程获取锁失败,则等待一段时间后重试。这里要注意,分布式环境中要使用分布式锁,单机的话用普通的锁(synchronized、Lock)就够了。

 1 public String getWithLock(String key, Jedis jedis, String lockKey, String uniqueId, long expireTime) {
 2     // 通过key获取value
 3     String value = redisService.get(key);
 4     if (StringUtil.isEmpty(value)) {
 5         // 分布式锁,详细可以参考https://blog.csdn.net/fanrenxiang/article/details/79803037
 6         //封装的tryDistributedLock包括setnx和expire两个功能,在低版本的redis中不支持
 7         try {
 8             boolean locked = redisService.tryDistributedLock(jedis, lockKey, uniqueId, expireTime);
 9             if (locked) {
10                 value = userService.getById(key);
11                 redisService.set(key, value);
12                 redisService.del(lockKey);
13                 return value;
14             } else {
15                 // 其它线程进来了没获取到锁便等待50ms后重试
16                 Thread.sleep(50);
17                 getWithLock(key, jedis, lockKey, uniqueId, expireTime);
18             }
19         } catch (Exception e) {
20             log.error("getWithLock exception=" + e);
21             return value;
22         } finally {
23             redisService.releaseDistributedLock(jedis, lockKey, uniqueId);
24         }
25     }
26     return value;
27 }

 

这样做思路比较清晰,也从一定程度上减轻数据库压力,但是锁机制使得逻辑的复杂度增加,吞吐量也降低了,有点治标不治本。

方案2、接口限流与熔断、降级

重要的接口一定要做好限流策略,防止用户恶意刷接口,同时要降级准备,当接口中的某些服务不可用时候,进行熔断,失败快速返回机制。

方案3、布隆过滤器

bloomfilter就类似于一个hash set,用于快速判某个元素是否存在于集合中,其典型的应用场景就是快速判断一个key是否存在于某容器,不存在就直接返回。布隆过滤器的关键就在于hash算法和容器大小,下面先来简单的实现下看看效果,我这里用guava实现的布隆过滤器:

 1 <dependencies> 
 2 <dependency> 
 3 <groupId>com.google.guava</groupId> 
 4 <artifactId>guava</artifactId> 
 5 <version>23.0</version> 
 6 </dependency> 
 7 </dependencies> 
 8 public class BloomFilterTest {
 9 
10 private static final int capacity = 1000000;
11 private static final int key = 999998;
12 
13 private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), capacity);
14 
15 static {
16 for (int i = 0; i < capacity; i++) {
17 bloomFilter.put(i);
18 }
19 }
20 
21 public static void main(String[] args) {
22 /*返回计算机最精确的时间,单位微妙*/
23 long start = System.nanoTime();
24 
25 if (bloomFilter.mightContain(key)) {
26 System.out.println("成功过滤到" + key);
27 }
28 long end = System.nanoTime();
29 System.out.println("布隆过滤器消耗时间:" + (end - start));
30 int sum = 0;
31 for (int i = capacity + 20000; i < capacity + 30000; i++) {
32 if (bloomFilter.mightContain(i)) {
33 sum = sum + 1;
34 }
35 }
36 System.out.println("错判率为:" + sum);
37 }
38 }

成功过滤到999998
布隆过滤器消耗时间:215518
错判率为:318
可以看到,100w个数据中只消耗了约0.2毫秒就匹配到了key,速度足够快。然后模拟了1w个不存在于布隆过滤器中的key,匹配错误率为318/10000,也就是说,出错率大概为3%,跟踪下BloomFilter的源码发现默认的容错率就是0.03:

1 public static <T> BloomFilter<T> create(Funnel<T> funnel, int expectedInsertions /* n */) {
2 return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions
3 }

 

我们可调用BloomFilter的这个方法显式的指定误判率:

 

private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), capacity,0.01);
我们断点跟踪下,误判率为0.02和默认的0.03时候的区别:

 

 

对比两个出错率可以发现,误判率为0.02时数组大小为8142363,0.03时为7298440,误判率降低了0.01,BloomFilter维护的数组大小也减少了843923,可见BloomFilter默认的误判率0.03是设计者权衡系统性能后得出的值。要注意的是,布隆过滤器不支持删除操作。用在这边解决缓存穿透问题就是:

 1 public String getByKey(String key) {
 2 // 通过key获取value
 3 String value = redisService.get(key);
 4 if (StringUtil.isEmpty(value)) {
 5 if (bloomFilter.mightContain(key)) {
 6 value = userService.getById(key);
 7 redisService.set(key, value);
 8 return value;
 9 } else {
10 return null;
11 }
12 }
13 return value;
14 }

 


(三)缓存雪崩问题
缓存在同一时间内大量键过期(失效),接着来的一大波请求瞬间都落在了数据库中导致连接异常。

解决方案:

方案1、也是像解决缓存穿透一样加锁排队,实现同上;

方案2、建立备份缓存,缓存A和缓存B,A设置超时时间,B不设值超时时间,先从A读缓存,A没有读B,并且更新A缓存和B缓存;

方案3、设置缓存超时时间的时候加上一个随机的时间长度,比如这个缓存key的超时时间是固定的5分钟加上随机的2分钟,酱紫可从一定程度上避免雪崩问题;

 1 public String getByKey(String keyA,String keyB) {
 2 String value = redisService.get(keyA);
 3 if (StringUtil.isEmpty(value)) {
 4 value = redisService.get(keyB);
 5 String newValue = getFromDbById();
 6 redisService.set(keyA,newValue,31, TimeUnit.DAYS);
 7 redisService.set(keyB,newValue);
 8 }
 9 return value;
10 }

 

(四)缓存并发问题
这里的并发指的是多个redis的client同时set key引起的并发问题。其实redis自身就是单线程操作,多个client并发操作,按照先到先执行的原则,先到的先执行,其余的阻塞。当然,另外的解决方案是把redis.set操作放在队列中使其串行化,必须的一个一个执行,具体的代码就不上了,当然加锁也是可以的,至于为什么不用redis中的事务,留给各位看官自己思考探究。

转载于:https://www.cnblogs.com/liluxiang/p/10320383.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值