把redis作为缓存使用已经是司空见惯,但是使用redis后也可能会碰到一系列的问题,尤其是数据量很大的时候,经典的几个问题如下:
(一)缓存和数据库间数据一致性问题
分布式环境下(单机就不用说了)非常容易出现缓存和数据库间的数据一致性问题,针对这一点的话,只能说,如果你的项目对缓存的要求是强一致性的,那么请不要使用缓存。我们只能采取合适的策略来降低缓存和数据库间数据不一致的概率,而无法保证两者间的强一致性。合适的策略包括 合适的缓存更新策略,更新数据库后要及时更新缓存、缓存失败时增加重试机制,例如MQ模式的消息队列。
(二)缓存击穿问题
缓存击穿表示恶意用户模拟请求很多缓存中不存在的数据,由于缓存中都没有,导致这些请求短时间内直接落在了数据库上,导致数据库异常。这个我们在实际项目就遇到了,有些抢购活动、秒杀活动的接口API被大量的恶意用户刷,导致短时间内数据库c超时了,好在数据库是读写分离,同时也有进行接口限流,hold住了。
解决方案的话:
方案1、使用互斥锁排队
业界比价普遍的一种做法,即根据key获取value值为空时,锁上,从数据库中load数据后再释放锁。若其它线程获取锁失败,则等待一段时间后重试。这里要注意,分布式环境中要使用分布式锁,单机的话用普通的锁(synchronized、Lock)就够了。
1 public String getWithLock(String key, Jedis jedis, String lockKey, String uniqueId, long expireTime) { 2 // 通过key获取value 3 String value = redisService.get(key); 4 if (StringUtil.isEmpty(value)) { 5 // 分布式锁,详细可以参考https://blog.csdn.net/fanrenxiang/article/details/79803037 6 //封装的tryDistributedLock包括setnx和expire两个功能,在低版本的redis中不支持 7 try { 8 boolean locked = redisService.tryDistributedLock(jedis, lockKey, uniqueId, expireTime); 9 if (locked) { 10 value = userService.getById(key); 11 redisService.set(key, value); 12 redisService.del(lockKey); 13 return value; 14 } else { 15 // 其它线程进来了没获取到锁便等待50ms后重试 16 Thread.sleep(50); 17 getWithLock(key, jedis, lockKey, uniqueId, expireTime); 18 } 19 } catch (Exception e) { 20 log.error("getWithLock exception=" + e); 21 return value; 22 } finally { 23 redisService.releaseDistributedLock(jedis, lockKey, uniqueId); 24 } 25 } 26 return value; 27 }
这样做思路比较清晰,也从一定程度上减轻数据库压力,但是锁机制使得逻辑的复杂度增加,吞吐量也降低了,有点治标不治本。
方案2、接口限流与熔断、降级
重要的接口一定要做好限流策略,防止用户恶意刷接口,同时要降级准备,当接口中的某些服务不可用时候,进行熔断,失败快速返回机制。
方案3、布隆过滤器
bloomfilter就类似于一个hash set,用于快速判某个元素是否存在于集合中,其典型的应用场景就是快速判断一个key是否存在于某容器,不存在就直接返回。布隆过滤器的关键就在于hash算法和容器大小,下面先来简单的实现下看看效果,我这里用guava实现的布隆过滤器:
1 <dependencies> 2 <dependency> 3 <groupId>com.google.guava</groupId> 4 <artifactId>guava</artifactId> 5 <version>23.0</version> 6 </dependency> 7 </dependencies> 8 public class BloomFilterTest { 9 10 private static final int capacity = 1000000; 11 private static final int key = 999998; 12 13 private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), capacity); 14 15 static { 16 for (int i = 0; i < capacity; i++) { 17 bloomFilter.put(i); 18 } 19 } 20 21 public static void main(String[] args) { 22 /*返回计算机最精确的时间,单位微妙*/ 23 long start = System.nanoTime(); 24 25 if (bloomFilter.mightContain(key)) { 26 System.out.println("成功过滤到" + key); 27 } 28 long end = System.nanoTime(); 29 System.out.println("布隆过滤器消耗时间:" + (end - start)); 30 int sum = 0; 31 for (int i = capacity + 20000; i < capacity + 30000; i++) { 32 if (bloomFilter.mightContain(i)) { 33 sum = sum + 1; 34 } 35 } 36 System.out.println("错判率为:" + sum); 37 } 38 }
成功过滤到999998
布隆过滤器消耗时间:215518
错判率为:318
可以看到,100w个数据中只消耗了约0.2毫秒就匹配到了key,速度足够快。然后模拟了1w个不存在于布隆过滤器中的key,匹配错误率为318/10000,也就是说,出错率大概为3%,跟踪下BloomFilter的源码发现默认的容错率就是0.03:
1 public static <T> BloomFilter<T> create(Funnel<T> funnel, int expectedInsertions /* n */) { 2 return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions 3 }
我们可调用BloomFilter的这个方法显式的指定误判率:
private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), capacity,0.01);
我们断点跟踪下,误判率为0.02和默认的0.03时候的区别:
对比两个出错率可以发现,误判率为0.02时数组大小为8142363,0.03时为7298440,误判率降低了0.01,BloomFilter维护的数组大小也减少了843923,可见BloomFilter默认的误判率0.03是设计者权衡系统性能后得出的值。要注意的是,布隆过滤器不支持删除操作。用在这边解决缓存穿透问题就是:
1 public String getByKey(String key) { 2 // 通过key获取value 3 String value = redisService.get(key); 4 if (StringUtil.isEmpty(value)) { 5 if (bloomFilter.mightContain(key)) { 6 value = userService.getById(key); 7 redisService.set(key, value); 8 return value; 9 } else { 10 return null; 11 } 12 } 13 return value; 14 }
(三)缓存雪崩问题
缓存在同一时间内大量键过期(失效),接着来的一大波请求瞬间都落在了数据库中导致连接异常。
解决方案:
方案1、也是像解决缓存穿透一样加锁排队,实现同上;
方案2、建立备份缓存,缓存A和缓存B,A设置超时时间,B不设值超时时间,先从A读缓存,A没有读B,并且更新A缓存和B缓存;
方案3、设置缓存超时时间的时候加上一个随机的时间长度,比如这个缓存key的超时时间是固定的5分钟加上随机的2分钟,酱紫可从一定程度上避免雪崩问题;
1 public String getByKey(String keyA,String keyB) { 2 String value = redisService.get(keyA); 3 if (StringUtil.isEmpty(value)) { 4 value = redisService.get(keyB); 5 String newValue = getFromDbById(); 6 redisService.set(keyA,newValue,31, TimeUnit.DAYS); 7 redisService.set(keyB,newValue); 8 } 9 return value; 10 }
(四)缓存并发问题
这里的并发指的是多个redis的client同时set key引起的并发问题。其实redis自身就是单线程操作,多个client并发操作,按照先到先执行的原则,先到的先执行,其余的阻塞。当然,另外的解决方案是把redis.set操作放在队列中使其串行化,必须的一个一个执行,具体的代码就不上了,当然加锁也是可以的,至于为什么不用redis中的事务,留给各位看官自己思考探究。