人工智能、机器学习和深度学习之间的区别与联系

 

 

大家都知道,在2016年,Google DeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machine learning)和深度学习(deep learning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。

 

今天就用最简单的方法——可视化的展现它们三者的关系和应用。

如上图,人工智能是最早出现的,也是范围最大的;其次的机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆发的核心驱动。

 

五十年代,人工智能曾一度被极为看好。之后,人工智能的一些较小的子集发展了起来。显示机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大影响。

 

从概念的提出到走向繁荣

 

1956年,几个计算机科学家相聚在达特茅斯会议,提出了“人工智能”的概念。其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的语言;或者被当成技术疯子的狂想扔到垃圾堆里。坦白说,直到2012年之前,这两种声音还在同时存在。

过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。

让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点苗头,发展到能够支撑那些每天被数亿用户使用的应用的。

 

人工智能(Artificial Intelligence)——为机器赋予人的智能

早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。这就是我们现在所说的“强人工智能”(General AI)。这个无所不能的机器,它有着我们所有的感知(甚至比人更多),我们所有的理性,可以像我们一样思考。

 

人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能现在还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。

 

我们目前能实现的,一般称为“弱人工智能”(Narrow AI)。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者Faceboo的人脸识别。

 

这些是弱人工智能在实践中的例子。这些技术实现的是人类智能的一些具体的局部。但它们是如何实现的?这种智能是从何而来?这就带我们来到机器学习。

 

机器学习——一种实现人工智能的方法

 

 

 机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

 

机器学习直接来源于早期的人工智能领域。传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。

 

机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。

 

这个结果还算不错,但并不是那种能让人为之一振的成功。特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么前一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。

 

随着时间的推进,学习算法的发展改变了一切。

 

深度学习——一种实现机器学习的技术

人工神经网络是早期机器学习中的一个重要的算法,历经数十年风风雨雨。神经网络的原理是我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。

 

例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。

 

每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。

 

我们仍以停止(Stop)标志牌为例。将一个停止标志牌的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有的权重,给出一个经过深思熟虑的猜测——“概率向量”。

 

这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。

 

即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。

 

不过,还是有一些虔诚的研究团队,以多伦多大学的Geoffrey Hinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。

 

我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结构。

 

只有这个时候,我们才可以说神经网络成功 地自学习到一个停止标志得样子;或在Facebook得应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达教授在Google实现了神经网络学习到猫得样子等等。

 

吴教授得突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入的海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中得图像。吴教授为深度学习(deep learning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。

 

现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。

 

深度学习,给人工智能以璀璨的未来

深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。

 

人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。

 

转载于:https://www.cnblogs.com/wyj690/p/10774777.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值