链接:https://www.nowcoder.com/acm/contest/86/H
来源:牛客网
题目描述
其次,Sεlιнα(Selina) 要进行体力比武竞赛。
在 Sεlιнα 所在的城市,有
个街区,编号为
,总共有
条的街道连接这些街区, 使得每两个街区之间都直接或间接地有街道将它们相连。Sεlιнα 把通过了文化知识竞赛的参赛男友们召集到她家所在的街区
,并以这个街区为起点,让所有参赛男友们向其他街区跑去。这些参赛者们被命令不准重复跑某条街道,而且在规定时间内要尽可能地跑远。比赛结束后,所有参赛者将停留在他们此时所在的街区。之后 Sεlιнα 开始视察结果。现在她知道每个街区都有一些她的参赛男友停留着,她现在想先去看看离她家第
近的街区。所以作为一位好帮手,你的任务是要告诉她所有街区中,离 Sεlιнα 家第
近的街区与 Sεlιнα 家之间的距离。
输入描述:
第一行三个整数,
,含义同题面描述。
接下去
行,每行三个整数,
,表示从第
个街区到第
个街区有一条权值为
的街道相连。街区从
开始标号。
输出描述:
输出共一行,一个整数,表示所有街区与 Sεlιнα 家所在街区之间最近距离的第
小值。
备注:
思路:
求单源最短路,稀疏图一般使用 Dijkstra , 稠密图使用 floyd
求单源最短路,稀疏图一般使用 Dijkstra , 稠密图使用 floyd
AC码:
#include <algorithm> #include <cstdio> #include <cstring> #include <string> #include <cmath> #include <iostream> #include <map> #include <queue> #include <set> #include <vector> using namespace std; #define max3(x, y, z) max(max((x), (y)), (z)) #define min3(x, y, z) min(mix((x), (y)), (z)) #define pb push_back #define ppb pop_back #define mk make_pair #define pii pair<int, int> #define pll pair<long long, long long> #define debug_l(a) cout << #a << " " << (a) << endl #define debug_b(a) cout << #a << " " << (a) << " " #define testin(filename) freopen((filename) ,"r",stdin) #define testout(filename) freopen((filename) ,"w",stdout) typedef long long ll; typedef unsigned long long ull; const double PI = 3.14159265358979323846264338327; const double E = exp(1); const double eps = 1e-6; const int INF = 0x3f3f3f3f; const int NINF = 0xc0c0c0c0; using namespace std; const int MAXN = 100005; struct edge { int from, to, cost; edge(int f, int t, int c) : from(f), to(t), cost(c) {} }; int d[MAXN]; bool vis[MAXN]; vector<edge>edges; vector<int>G[MAXN]; typedef pair<int, int> P; void Dijkstra(int s) { priority_queue<P, vector<P>, greater<P> > que; fill(d, d + MAXN, INF); fill(vis, vis + MAXN, 0); d[s] = 0; que.push(make_pair(0, s)); while (!que.empty()) { P p = que.top(); que.pop(); int v = p.second; if (d[v] < p.first) continue; //d[v] < p.first 说明,v 点已经通过其他路径变得松弛,距离更短。而 p.first 只是之前入队的旧元素 for (int i = 0; i < G[v].size(); i++) { edge e = edges[G[v][i]]; if (d[e.to] > d[v] + e.cost) { d[e.to] = d[v] + e.cost; que.push(P(d[e.to], e.to)); } } } } int main() { //testin("data.in"); int n, p, k; scanf("%d%d%d", &n, &p, &k); for (int i = 0; i < n - 1; i++) { int f, t, c; scanf("%d%d%d", &f, &t, &c); edges.push_back(edge(f, t, c)); G[f].push_back(edges.size() - 1); edges.push_back(edge(t, f, c)); G[t].push_back(edges.size() - 1); } Dijkstra(p); sort(d, d + n + 2); printf("%d\n", d[k]); return 0; }