Sumdiv|同余|约数|拓展欧几里得算法

呕,我吐了。img

Sumdiv|同余|约数|拓展欧几里得算法

Problem

\[ 求A^{B}的所有约数之和 \ mod \ 9901\left(1\leqslant A,B \leqslant 5*10^{7}\right) \]

分析

约数个数定理部分

定理内容:

对于一个大于1的正整数n可以分解质因数:

img

则n的正约数个数为:

img

定理证明:

约数定义可得,
\[ p_k^{a_k}的约数有\left(a_k+1\right)个。 \]
故根据乘法原理:

n的约数个数就是:

img


约数和定理部分

定理内容:

img

定理证明:

约数个数定理乘法原理可证。


等比数列部分

等比数列通项公式、求和公式

formula

formula


题目分析

把A分解质因数
\[ A=p_1^{c_1}\cdot p_2^{c_2}\cdot p_3^{c_3}\cdot ... \cdot p_n^{c_n} \]

根据约数和定理
\[ S=\prod_{i=1}^{i=n}\left(\sum_{j=1}^{j=B\cdot C_n}\right) \]
每一项都是一个等比数列

根据等比数列求和公式:
\[ S=1+p_k+p_k^2+...+p_k^{B\cdot C_1}=\frac{p_k^{B\cdot c_k+1}-1}{p_k-1} \]


扩展欧几里得算法部分

可以先用快速幂计算分子
\[ \left(P_k^{B\cdot c_1+1}-1\right)mod\ 9901 \]
和分母
\[ \left(p_k-1\right)mod\ 9901 \]
因为9901是质数,只要pk-1不是6601的倍数,就只需pk-1的乘法逆元inv,用乘inv代替除以(pk-1),直接计算出等比数列求和公式的结果。

特别地,若pk-1是9901的倍数,此时乘法逆元不存在,但pk mod 9901=1,所以
\[ 1+p_k+p_k^2+...+p_k^{B\cdot c_1}\equiv1+1+1^2+...+1^{B\cdot c_1}\equiv B\cdot c_1+1\left(mod\ 9901\right) \]

Code

#include <cstdio>
#include <iostream>
#define ll long long
using namespace std;
const ll mod=9901;
ll a,b,m,ans=1;
ll p[20],c[20];
void divide(ll n){//分解质因数 
    m=0;
    for(int i=2;i*i<=n;i++)
        if(n%i==0){
            p[++m]=i,c[m]=0;
            while(n%i==0) n/=i,c[m]++;
        }
    if(n>1) p[++m]=n,c[m]=1;
}
ll power(ll a,ll b){
    ll c=1;
    while(b){
        if(b&1) c=(ll)c*a%mod;
        a=(ll)a*a%mod;
        b>>=1;
    }
    return c;
}
int main(){
    while(~scanf("%lld%lld",&a,&b)){
        ans=1;
        divide(a);
        for(ll i=1;i<=m;i++){
            if((p[i]-1)%mod==0){//没有逆元,特判 
                ans=(b*c[i]+1)%mod*ans%mod;
                continue;
            }
            ll x=power(p[i],(ll)b*c[i]+1);//分子
            x=(x-1+mod)%mod;
            ll y=p[i]-1;//分母
            y=power(y,mod-2);//根据费马小定理
            ans=(ll)ans*x%mod*y%mod; 
        }
        printf("%lld\n",ans);
    }
    return 0;
}

转载于:https://www.cnblogs.com/saitoasuka/p/10344045.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是用C++实现上述思路的代码: ```cpp #include <iostream> #include <vector> using namespace std; const int mod = 1000000007; // 线性筛法计算欧拉函数的前缀和 void calculatePhi(vector<int>& phi, vector<int>& prime, vector<bool>& isPrime, int k) { phi[1] = 1; for (int i = 2; i <= k; i++) { if (isPrime[i]) { prime.push_back(i); phi[i] = i - 1; } for (int j = 0; j < prime.size() && i * prime[j] <= k; j++) { isPrime[i * prime[j]] = false; if (i % prime[j] == 0) { phi[i * prime[j]] = phi[i] * prime[j]; break; } else { phi[i * prime[j]] = phi[i] * (prime[j] - 1); } } } // 计算前缀和 for (int i = 2; i <= k; i++) { phi[i] = (phi[i] + phi[i - 1]) % mod; } } // 计算⌊n/i⌋的前缀和 vector<int> calculateDivPrefixSum(int n, int k) { vector<int> sumDiv(k + 1, 0); for (int i = 1; i <= k; i++) { sumDiv[i] = (sumDiv[i - 1] + n / i) % mod; } return sumDiv; } int main() { int k; cin >> k; vector<int> phi(k + 1, 0); vector<int> prime; vector<bool> isPrime(k + 1, true); calculatePhi(phi, prime, isPrime, k); vector<int> sumDiv = calculateDivPrefixSum(k, k); int result = 0; for (int i = 1; i <= k; i++) { int factorCount = k / i; int temp = (sumDiv[factorCount] - sumDiv[i - 1] + mod) % mod; result = (result + phi[i] * temp) % mod; } cout << result << endl; return 0; } ``` 你可以将上述代码保存为一个.cpp文件,然后使用C++编译器进行编译和运行。输入k的值,即可得到最终结果。 希望对你有帮助!如果还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值