排序:
默认
按更新时间
按访问量

caffe之保存和读入caffmodel文件

一、caffe如何将卷积层或网络层的权值blob给保存下来的? 首先Solver类在Step(intiters)中调用了Snapshot()函数,在voidSolver<Dtype>::Snapshot()函数中能看到保存caffemodel文件的重要...

2018-07-14 09:50:21

阅读数:60

评论数:0

ctags+taglist+winmanger 打造vim 编辑器

一、前言      本篇主要使用ctags+taglist+winmanger 将 vim 编辑器打造为具有IDE般的功能      ctags:是vim下方便代码阅读的工具,通过这一工具能够很方便的追溯变量、函数的定义以及调用      taglist:与ctags搭配使用,将在vim的左侧或右...

2018-06-17 11:57:51

阅读数:36

评论数:0

将cpp文件封装成 so 文件并调用

一、前言    本篇记录下将 Cpp文件打包成so 文件,并在其他cpp文件中作调用二、将cpp文件编译为so文件在文件夹 cpp1 下创建a.h a.cpp b.h b.cpp 如下://a.h #ifndef A_H_ #define A_H_ #include "b.h&...

2018-04-19 01:06:19

阅读数:435

评论数:0

牛客网上的题总结下 python解法

1.二维数组的查找描述:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。class Solution: # array 二维列表 def Find(self, ta...

2018-04-18 11:00:10

阅读数:297

评论数:0

将C++源码封装为dll,并提供接口给调用

一、前言        本文主要记录将某个cpp函数在vs上封装为dll ,并在另一cpp中调用该dll 接口。 二、欲封装的源码 //MOG_BGS3.h #include "opencv2/core/core.hpp" #include #include"cv....

2017-12-30 12:00:25

阅读数:655

评论数:0

codeblock配置caffe

一、前言       由于gdb调试caffe诸多不易,为节约时间,使用codeblock调试caffe,有助于理解caffe源码,这里记录配置过程,这要参考以下博文 二、配置前提 1.安装好caffe,并配置好环境,由于只是为了理解源码,故使用CPU模型,容易配置些,故在Makefile需将以下...

2017-09-28 22:32:45

阅读数:291

评论数:0

网络协议点滴总结

一、OSI 七层模型中工作的协议 应用层:    HTTP、SMTP、SNMP、FTP、Telnet、DNS、SIP、SSH、NFS、RTSP、XMPP、Whois、ENRP 表示层:    XDR、ASN.1、SMB、AFP、NCP 会话层:    ASAP、TLS、SSH、ISO 8327 /...

2017-09-25 10:53:13

阅读数:159

评论数:0

Hash 查找

一、前言        哈希查找的资料就看这里吧  http://blog.csdn.net/xiaoping8411/article/details/7706376 ,哈希查找的本质就是定好表长,创建哈希表,哈希表上的表格就像桶子一样,需要将数据点,先映射为key值(防止奇怪的取值),之后再使用...

2017-09-24 23:09:23

阅读数:144

评论数:0

回溯法求解数组中和为固定值的所有元素集合

一、前言        本文参考自http://blog.csdn.net/u012462822/article/details/51193689,找出数组中和为固定值的所有元素集合,常用的思路是先进行排序,之后再用回溯的方法不断尝试所有可能集合。以下先用快速排序(写得有点烂)降序,再找出降了序的...

2017-09-24 17:57:28

阅读数:172

评论数:0

python 读入多行数据

一、前言       本文主要使用python 的raw_input() 函数读入多行不定长的数据,输入结束的标志就是不输入数字情况下直接回车,并填充特定的数作为二维矩阵 二、代码 def get2DlistData(): res = [] inputLine = raw...

2017-09-21 23:11:36

阅读数:3312

评论数:0

caffe下使用g++编译cpp文件时 遇到 fatal error: cublas_v2.h: 没有那个文件或目录

一、前言        在caffe下使用g++编译cpp文件生成bin文件时突然遇到 fatal error: cublas_v2.h: 没有那个文件或目录 这个吐血问题,通过查找资料找到解决的方法了 二、g++编译生成bin文件        本人的编译命令是 g++   ***.cpp  -...

2017-09-18 23:31:36

阅读数:1659

评论数:0

八大排序

1. 前言         本文主要是记录常用的排序和查找算法。 2.1

2017-09-15 20:56:07

阅读数:228

评论数:0

yolo v2之车牌检测后续识别字符(二)

一、前言        这一篇续接前一篇《yolo v2之车牌检测后续识别字符(一)》,主要是生成模型文件、配置文件以及训练、测试模型。 二、python接口生成配置文件、模型文件        车牌图片端到端识别的模型文件参考自这里,模型图如下所示:         本来想使用caffe的...

2017-08-09 19:52:14

阅读数:4475

评论数:7

yolo v2之车牌检测后续识别字符(一)

一、前言        本篇续接前一篇 yolo v2 之车牌检测 ,前一篇使用yolo v2已经可以很准确地框出车牌图片了,这里完成后续的车牌字符号码的识别,从车牌框框中要识别出车牌字符,笔者能想到3种思路,1种是同样yolo、SSD等深度学习目标检测的方法直接对车牌内的字符识别;第2种是传统方...

2017-08-09 19:33:10

阅读数:5133

评论数:12

yolo v2 之车牌检测

一、前言         本文主要使用yolo v2 训练自己的车牌图片数据,并能够框出测试图片中存在的车牌区域,也即车牌检测。本文参考了博文http://m.blog.csdn.net/qq_34484472/article/details/73135354和http://blog.csdn.n...

2017-07-20 20:58:08

阅读数:7250

评论数:15

使用requests模块下载爬虫百度图片

一、前言        在github上找到个输入关键词和下载数量即可爬虫多张百度图片的方法,实际测试发现不支持中文关键词,并且最多只能下载60张以内,经过修改后可支持中文,并能下载多张图片。 二、代码        首先需要安装requests模块,该方法主要是使用http://image.ba...

2017-07-19 12:10:25

阅读数:2959

评论数:5

使用caffe的python接口预测多张图片

一、前言        根据前面博文 使用lenet模型训练及预测自己的图片数据 可得到训练得的caffemodel及其他相关的文件,回顾下My_FIle文件夹如下,predictPic文件夹中保存的是名为“0“~“9“的文件夹,分别保存相应的0~9的多张字符图片:          使用c...

2017-07-16 12:12:57

阅读数:728

评论数:0

libsvm中OC-SVM 调参问题

一、前言         本文主要讨论libsvm中的OCSVM调参问题,参考了博文http://www.voidcn.com/blog/lplpysys/article/p-3920288.html,OCSVM是一类SVM,即适用于训练样本均为正样本,或者负样本极少的分类模型, 二、libsvm...

2017-07-10 18:58:15

阅读数:1021

评论数:1

使用lenet模型训练及预测自己的图片数据

一、前言 本文主要尝试将自己的数据集制作成lmdb格式,送进lenet-5作训练和测试,参考了http://blog.csdn.net/liuweizj12/article/details/52149743和http://blog.csdn.net/xiaoxiao_huitailang/arti...

2017-07-08 03:56:07

阅读数:4271

评论数:1

CNN反向传播训练参数过程

一、前言       人共神经网络的训练主要采用梯度下降算法,计算过程采用误差反向传播(BP)的方式计算误差函数对全部权值和偏置的梯度,由该梯度更新训练参数,CNN卷积神经网络也可采用基于BP的梯度下降算法。 二、交叉熵代价函数

2017-06-08 20:23:07

阅读数:2559

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭