一种利用ngram模型来消除歧义的中文分词方法

这里的歧义是指:同样的一句话,可能有两种或者更多的切分方法,这些切分结果,有的正确,有的不正确。

消除歧义的目的就是从切分结果中挑选切分正确的。

假设我们要切分句子:结婚的和尚未结婚的,使用逆向最大匹配正向最大匹配算法的结果如下:

?
1
2
逆向最大匹配:[结婚, 的, 和, 尚未, 结婚, 的]
正向最大匹配:[结婚, 的, 和尚, 未结, 婚, 的]

再比如,这几块地面积还真不小

?
1
2
逆向最大匹配:[这, 几块, 地, 面积, 还真, 不小]
正向最大匹配:[这, 几块, 地面, 积, 还真, 不小]

这里就出现了歧义现象,这种歧义现象称为交集型歧义。

交集型歧义的特点是,其中的一个字既可以和前面的字结合成词,也可以和后面的字结合成词,如上面所说的“和尚未"中就是这样的字,既可以和前面的字结合成“和尚”也可以和后面的字结合成“尚未”。还有“地面积”中的,既可以是地面,也可以是面积

那么我们该选择哪一个分词结果呢?

我们可以利用ngram模型来消除歧义,我们看第一个例子的分词过程:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
初始化bigram
bigram初始化完毕,bigram数据条数: 1519443
 
利用bigram为逆向最大匹配算法的分词结果进行评分:
 
二元模型 结婚:的 获得分值: 16.970562
二元模型 和:尚未 获得分值: 2.0
二元模型 尚未:结婚 获得分值: 1.4142135
二元模型 结婚:的 获得分值: 16.970562
 
逆向最大匹配:[结婚, 的, 和, 尚未, 结婚, 的] : ngram分值= 37.35534
 
利用bigram为正向最大匹配算法的分词结果进行评分:
 
二元模型 结婚:的 获得分值: 16.970562
二元模型 的:和尚 获得分值: 3.0
 
正向最大匹配:[结婚, 的, 和尚, 未结, 婚, 的] : ngram分值= 19.970562
 
最大分值: 37.35534 , 消歧结果:[结婚, 的, 和, 尚未, 结婚, 的]

接着看第二个例子:

?
1
2
3
4
5
6
7
8
9
10
11
利用bigram为逆向最大匹配算法的分词结果进行评分:
 
二元模型 地:面积 获得分值: 1.7320508
 
逆向最大匹配:[这, 几块, 地, 面积, 还真, 不小] : ngram分值= 1.7320508
 
利用bigram为正向最大匹配算法的分词结果进行评分:
 
正向最大匹配:[这, 几块, 地面, 积, 还真, 不小] : ngram分值= 0.0
 
最大分值: 1.7320508 , 消歧结果:[这, 几块, 地, 面积, 还真, 不小]

这里要解释的是,ngram中的n>1,我们这里取2(bi),我们看到bigram中数据的条数有1519443,bigram需要从人工标注的语料库中提取,提取方法参考word分词项目,bigram中的数据格式如下:

?
1
2
3
4
5
6
结婚:登记  91
结婚:的  288
地:面积  3
和:尚未  4
尚未:结婚  2
的:和尚  9

表示的含义是在人工标注的语料库中,结婚这个词后面跟着登记这个词的出现次数是91次,结婚这个词后面跟着这个词的出现次数是288次。

如果ngram中的n为3,则数据格式如下:

?
1
2
3
4
结婚:的:事情  3
结婚:的:人  4
结婚:的:信念  2
结婚:的:决定  13

表示的含义和bigram一致。

通过分析bigram和trigram,我们知道,在ngram中,n越大,消歧的效果就越好,但是数据也越大,耗费的内存就更多了。

利用ngram模型来消除歧义,依赖人工标注的语料库,利用了统计学的大数定律,这种方法的缺点在于无法处理少见的语言现象,以及无法处理样本覆盖不到的情况。

 

 

 

 

  • 0
    点赞
  • 1
    收藏
  • 0
    评论
word分词是一个Java实现中文分词组件,提供了多种基于词典分词算法,并利用ngram模型消除歧义。 能准确识别英文、数字,以及日期、时间等数量词,能识别人名、地名、组织机构名等未登录词。 同时提供了Lucene、Solr、ElasticSearch插件。 分词使用方法: 1、快速体验 运行项目根目录下脚本demo-word.bat可以快速体验分词效果 用法: command [text] [input] [output] 命令command可选值为:demo、text、file demo text 杨尚川是APDPlat应用级产品开发平台作者 file d:/text.txt d:/word.txt exit 2、对文本进行分词 移除停用词:List words = WordSegmenter.seg("杨尚川是APDPlat应用级产品开发平台作者"); 保留停用词:List words = WordSegmenter.segWithStopWords("杨尚川是APDPlat应用级产品开发平台作者"); System.out.println(words); 输出: 移除停用词:[杨尚川, apdplat, 应用级, 产品, 开发平台, 作者] 保留停用词:[杨尚川, 是, apdplat, 应用级, 产品, 开发平台, , 作者] 3、对文件进行分词 String input = "d:/text.txt"; String output = "d:/word.txt"; 移除停用词:WordSegmenter.seg(new File(input), new File(output)); 保留停用词:WordSegmenter.segWithStopWords(new File(input), new File(output)); 4、自定义配置文件 默认配置文件为类路径下word.conf,打包在word-x.x.jar中 自定义配置文件为类路径下word.local.conf,需要用户自己提供 如果自定义配置和默认配置相同,自定义配置会覆盖默认配置 配置文件编码为UTF-8 5、自定义用户词库 自定义用户词库为一个或多个文件夹或文件,可以使用绝对路径或相对路径 用户词库由多个词典文件组成,文件编码为UTF-8 词典文件格式为文本文件,一行代表一个词 可以通过系统属性或配置文件方式指定路径,多个路径之间用逗号分隔开 类路径下词典文件,需要在相对路径前加入前缀classpath: 指定方式有三种: 指定方式一,编程指定(高优先级): WordConfTools.set("dic.path", "classpath:dic.txt,d:/custom_dic"); DictionaryFactory.reload();//更改词典路径之后,重新加载词典 指定方式二,Java虚拟机启动参数(中优先级): java -Ddic.path=classpath:dic.txt,d:/custom_dic 指定方式三,配置文件指定(低优先级): 使用类路径下文件word.local.conf指定配置信息 dic.path=classpath:dic.txt,d:/custom_dic 如未指定,则默认使用类路径下dic.txt词典文件 6、自定义停用词词库 使用方式和自定义用户词库类似,配置项为: stopwords.path=classpath:stopwords.txt,d:/custom_stopwords_dic 7、自动检测词库变化 可以自动检测自定义用户词库和自定义停用词词库变化 包含类路径下文件和文件夹、非类路径下绝对路径和相对路径 如: classpath:dic.txt,classpath:custom_dic_dir, d:/dic_more.txt,d:/DIC_DIR,D:/DIC2_DIR,my_dic_dir,my_dic_file.txt classpath:stopwords.txt,classpath:custom_stopwords_dic_dir, d:/stopwords_more.txt,d:/STOPWORDS_DIR,d:/STOPWORDS2_DIR,stopwords_dir,remove.txt 8、显式指定分词算法 对文本进行分词时,可显式指定特定分词算法,如: WordSegmenter.seg("APDPlat应用级产品开发平台", SegmentationA

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值