#(线性DP)洛谷P1280 尼克的任务(普及+/提高)

题目描述

尼克每天上班之前都连接上英特网,接收他的上司发来的邮件,这些邮件包含了尼克主管的部门当天要完成的全部任务,每个任务由一个开始时刻与一个持续时间构成。

尼克的一个工作日为N分钟,从第一分钟开始到第N分钟结束。当尼克到达单位后他就开始干活。如果在同一时刻有多个任务需要完成,尼克可以任选其中的一个来做,而其余的则由他的同事完成,反之如果只有一个任务,则该任务必需由尼克去完成,假如某些任务开始时刻尼克正在工作,则这些任务也由尼克的同事完成。如果某任务于第P分钟开始,持续时间为T分钟,则该任务将在第P+T-1分钟结束。

写一个程序计算尼克应该如何选取任务,才能获得最大的空暇时间。

输入格式

输入数据第一行含两个用空格隔开的整数N和K(1≤N≤10000,1≤K≤10000),N表示尼克的工作时间,单位为分钟,K表示任务总数。

接下来共有K行,每一行有两个用空格隔开的整数P和T,表示该任务从第P分钟开始,持续时间为T分钟,其中1≤P≤N,1≤P+T-1≤N。

输出格式

输出文件仅一行,包含一个整数,表示尼克可能获得的最大空暇时间。

输入输出样例

输入 #1复制
15 6
1 2
1 6
4 11
8 5
8 1
11 5
输出 #1复制
4
分析:经典的线性DP问题
首先考虑状态,设f[i]表示从1到i的最大空暇时间。
但是这样设存在一个问题:f[i]的值和从i出发的所有工作所能到达的终止时间有关,也就是说随f[i]的值的改变,后面的值将会受到影响
即后面的值与前面的值是如何得到的有关,不具备无后效性原则。
那么怎么办呢?
倒着设,倒推!
设f[i]表示i到n的最大空闲时间。
那么对于i
1.i点不需要工作,则空闲时间为前面+1;f[i]=f[i+1]+1;
2.i点需要工作,则考虑所有以i为起点的任务
f[i]-max(f[i],f[i+work[j]]);
代码如下:

/*

#include<iostream>
#include<vector>
#include<cstdio>
#include<cstring>
using namespace std;
vector <int> a[10001];
int book[10001],f[100001];
int n,k;
bool check(int x)
{
int ans=0;
for(int i=1;i<=x;i++)
ans+=book[i];
return ans;
}
int main()
{
//read
int start,len;
cin>>n>>k;
for(int i=1;i<=k;i++)
{
cin>>start>>len;
a[start].push_back(len);
book[start]++;
book[start+len]--;
}
//dp
memset(f,0x3f,sizeof(f));
f[0]=0;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=i;j++)
{
for(int t=0;t<a[j].size();t++)
if(j+a[j][t]-1==i)
f[i]=min(f[i],f[j]+a[j][t]);
}
}
cout<<n-f[n];
return 0;
}*/
#include<iostream>
#include<vector>
#include<cstdio>
#include<algorithm>
using namespace std;
struct node{
int st,len;
};//定义结构体存储任务,包含起点和时长
node p[10001];
bool cmp(const node &a,const node &b)//自定义sort排序函数
{
return a.st>b.st;//因为是倒推,所以起点从大到小排序!
}
int sum[100001];//sum[i]数组存储以i为起点有多少个任务
int f[100002];//f[i]为dp数组
int n,k;
inline int max(int x,int y)//
{
return x>y?x:y;
}
int main()
{
int start,len,num=1;
cin>>n>>k;
for(int i=1;i<=k;i++)//read
{
cin>>p[i].st>>p[i].len;
sum[p[i].st]++;//起点任务数+1
}
sort(p+1,p+1+k,cmp);//排序
for(int i=n;i>=1;i--)
{
if(sum[i]==0)//若该点没有任务
f[i]=f[i+1]+1;//继承后继节点的时间+1
else
{
for(int j=1;j<=sum[i];j++)//对于所有i起点的任务
{
f[i]=max(f[i],f[i+p[num].len]);//dp
num++;//将边向前移动

}
}
}
cout<<f[1];//ans
return 0;
}

转载于:https://www.cnblogs.com/little-cute-hjr/p/11409115.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值