蓝桥--未名湖边的烦恼 (递推)

http://lx.lanqiao.org/problem.page?gpid=T303

 算法训练 未名湖边的烦恼  
时间限制:1.0s   内存限制:256.0MB
    
问题描述
  每年冬天,北大未名湖上都是滑冰的好地方。北大体育组准备了许多冰鞋,可是人太多了,每天下午收工后,常常一双冰鞋都不剩。
  每天早上,租鞋窗口都会排起长龙,假设有还鞋的m个,有需要租鞋的n个。现在的问题是,这些人有多少种排法,可以避免出现体育组没有冰鞋可租的尴尬场面。(两个同样需求的人(比如都是租鞋或都是还鞋)交换位置是同一种排法)
输入格式
  两个整数,表示m和n
输出格式
  一个整数,表示队伍的排法的方案数。
样例输入
3 2
样例输出
5
数据规模和约定
  m,n∈[0,18]
  问题分析
 还鞋用A表示,借鞋用B表示,可以抽象成n个A和m个B排列,要求是任意前i个必有A的个数不少于B,所以第一个一定是A,然后下一个数可能是A或B,如果是A的话,跟第一个数的情况相同,如果是B的话下一个只能选A,so...递归
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 #include <cmath>
 6 using namespace std;
 7 int n,m;
 8 int f(int x, int y)  //表示A还剩x个,B还剩y个
 9 {
10     if(y == 0 || x == 0) //如果A或这B没有了,方案数就确定了
11         return 1;
12     if(n - x == m - y)  //如果已经取的A的个数和B的个数相同,下一个肯定要取A
13         return f(x - 1, y);
14     else if(n - x > m - y) //如果已经去的A的个数比B大,那么无所谓,下一个要么取A,要么取B
15         return f(x - 1, y) + f(x, y - 1);
16     return 0;
17 }
18 int main()
19 {
20     scanf("%d%d", &n,&m);
21     if(n < m)     //这个没在意,第一遍没过,一定要严谨
22         printf("0\n");
23     else
24         printf("%d\n",f(n,m)); 
25     return 0;
26 }
View Code

最正统的最高效的做法应该是递推

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 #include <cmath>
 6 using namespace std;
 7 int f[20][20];  //f[x][y]表示取A和B个数分别是x,y
 8 int main()
 9 {
10     int n,m;
11     scanf("%d%d", &n,&m);
12     memset(f, 0, sizeof(f));
13     for(int i = 1; i <= n; i++)
14         f[i][0] = 1;    //两步预处理
15     for(int i = 1; i <= m; i++)
16         f[0][i] = 1;
17     for(int i = 1; i <= n; i++)
18     {
19         for(int j = 1; j <= m; j++)
20         {
21             if( i == j )  //如果这一步取的A和B相等,那么一定是这一步取的一个B,上一个状态B要少一个,就是j-1
22                 f[i][j] = f[i][j - 1];
23             else if(i > j)  //如果这一步取的A>B,那么这一步可能是同过取了一个A(f[i-1][j])或者一个B(f[i][j-1])得到的,
24             {
25                 f[i][j] = f[i - 1][j] + f[i][j - 1];
26             }
27         }
28     }
29     printf("%d\n", f[n][m]);
30     return 0;
31 }
View Code

 

转载于:https://www.cnblogs.com/zhaopAC/p/5088856.html

城市运行管理的重要性与挑战 城市运行体系是以人为本的服务和经济发展体系,涉及决策、管理和执行三个层次。当前城市运行管理面临城市化快速发展、资源环境制约和社会矛盾突出等挑战。信息技术的发展为城市运行管理提供了重要手段,城市信息化经历了数字化、智能化到智慧化的发展过程。我国城市信息化虽取得进展,但仍处于初级阶段,存在缺乏整体规划、资源浪费和协作效率不高等问题。 智慧城市综合运行管理解决方案 智慧城市运行管理中心(SCOC)是支撑城市运行综合管理的神经中枢,旨在掌控城市运行综合体征,促进服务型政府转型。该中心通过全面整合运行资源,服务城市未来发展,提升城市运行水平和突发事件处置效率。中心纵向提升综合职能,横向贯通专业分工,包括综合管理平台、专业管理平台和业务操作平台,覆盖城市交通、公共安全、生态环境等多个领域。 智慧城市综合运行管理平台的结构与功能 智慧城市综合运行管理平台包括决策支持系统、处置系统、基础设施和监测系统。平台通过综合展现系统、综合应急指挥系统、综合运行业务联动系统等,实现城市运行的综合监测和管理。物联网数据采集系统利用网络通讯技术,实现城市物联网设备的高效运行。平台还包含云计算业务支撑系统、城市基础数据库、视频图像云平台等,以支持城市运行管理的各个方面。 智慧城市综合运行管理解决方案的优势 该解决方案具有三个核心优势:首先,它提供了完整的智慧城市视角,不仅仅是指挥中心或数据中心,而是智慧城市的实际载体。其次,它建立了完整的城市运行联动体系,打通业务部门壁垒,形成有机融合的业务联动平台,提升业务处理效率和服务水平。最后,方案凝聚了多年智慧城市建设咨询经验,为城市运行管理提供了成熟的解决方案。 项目实施建议 智慧城市运行管理中心的建设思路和项目实施建议是方案的重要组成部分,旨在指导城市如何有效实施智慧城市运行管理解决方案,以应对城市运行管理的挑战,提升城市管理的智能化和效率。通过这些建议,城市能够更好地规划和实施智慧城市项目,实现可持续发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值