1. 题目链接
230. 二叉搜索树中第 K 小的元素 - 力扣(LeetCode)
2. 题目描述
给定一个二叉搜索树的根节点 root
,和一个整数 k
,请你设计一个算法查找其中第 k
小的元素(从 1 开始计数)。
3. 题目示例
示例 1 :
输入:root = [3,1,4,null,2], k = 1
输出:1
示例 2 :
输入:root = [5,3,6,2,4,null,null,1], k = 3
输出:3
4. 解题思路
要找到二叉搜索树(BST)中第k小的元素,可以利用BST的中序遍历特性(升序排列),通过递归遍历实现高效查找:
- 中序遍历顺序:按照左子树 → 根节点 → 右子树的顺序遍历,确保访问节点值的顺序是升序的。
- 计数与提前终止:在遍历过程中对访问的节点计数,当计数达到k时立即返回结果,避免不必要的遍历。
- 递归剪枝:一旦在左子树中找到结果,直接向上层返回,跳过后续的右子树遍历,提升效率。
5. 题解代码
class Solution {
private int k; // 记录当前剩余需要遍历的节点数
public int kthSmallest(TreeNode root, int k) {
this.k = k; // 初始化剩余节点数
return dfs(root); // 通过中序遍历查找第k小的值
}
private int dfs(TreeNode node) {
if (node == null) {
return -1; // 空节点返回无效值
}
// 递归遍历左子树
int leftRes = dfs(node.left);
if (leftRes != -1) {
return leftRes; // 左子树已找到结果,直接返回
}
// 处理当前节点:计数减1,检查是否满足条件
if (--this.k == 0) {
return node.val; // 当前节点是第k小的值
}
// 递归遍历右子树
return dfs(node.right);
}
}
6. 复杂度分析
- 时间复杂度:O(k)
最坏情况下需要遍历k个节点(例如当目标值位于右子树末端时)。对于平衡BST,平均时间复杂度为O(log n + k)。 - 空间复杂度:O(h)
递归调用栈的深度取决于树的高度h。平衡树时为O(log n),退化为链表时为O(n)。