tensorflow中两个经常用到的操作,理解的不是很透彻,故在此做标记:


关于reduce_sum的维度问题也容易让人迷惑,特找来好用的图示,一看即懂:

为了加深影响,给出简单code
import numpy as np
import tensorflow as tf
inputs = [[1,0,2],[3,2,4]]
inputs = np.array(inputs)
A = tf.sign(inputs)
B = tf.reduce_sum(A, reduction_indices=1)
with tf.Session() as sess:
print(sess.run(A))
print(sess.run(B))
执行结果如下:

import tensorflow as tf
init_glorot_uniform = tf.glorot_uniform_initializer()
y

本文介绍了TensorFlow中tf.sign和tf.reduce_sum的使用,通过示例代码和输出结果展示这两个操作的功能。tf.sign返回输入张量每个元素的符号,tf.reduce_sum则对张量指定维度进行求和。同时提供了参考资料以加深理解。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



