看论文收集所得,觉得非常好,特记录在此
(1) 优化器的交替使用
定义两个优化器,其中一个优化器带有L2正则化,另一个优化器不使用L2正则化:
optim1 = optim.SGD(model.parameters(), lr=rela_config.lr, momentum=rela_config.momentum, weight_decay=rela_config.weight_decay)
optim2 = optim.SGD(model.parameters(), lr=rela_config.lr, momentum=rela_config.momentum)
在训练的过程中,两个优化器交替使用,比如在奇数epoch时选择optim1优化器,在偶数epoch时选用optim2优化器
(2)word_embedding的选用
word_embedding用了两种,一种是利用大规模语料训练得出的word_embedding, 另一种是随机初始化的word_embedding. 两个embedding串接作为当前词的word_embedding.
如图中所示, <

这篇博客总结了神经网络优化的一些实用技巧,包括交替使用带L2正则化的优化器与不带的优化器,结合预训练与随机初始化的word_embedding,以及word_dropout方法来防止过拟合。这些技巧来源于不同的研究论文,对于提升模型性能有显著效果。
最低0.47元/天 解锁文章
2537

被折叠的 条评论
为什么被折叠?



