neural network优化小技巧大总结

这篇博客总结了神经网络优化的一些实用技巧,包括交替使用带L2正则化的优化器与不带的优化器,结合预训练与随机初始化的word_embedding,以及word_dropout方法来防止过拟合。这些技巧来源于不同的研究论文,对于提升模型性能有显著效果。
摘要由CSDN通过智能技术生成

看论文收集所得,觉得非常好,特记录在此
(1) 优化器的交替使用
定义两个优化器,其中一个优化器带有L2正则化,另一个优化器不使用L2正则化:

optim1 = optim.SGD(model.parameters(), lr=rela_config.lr, momentum=rela_config.momentum, weight_decay=rela_config.weight_decay)
optim2 = optim.SGD(model.parameters(), lr=rela_config.lr, momentum=rela_config.momentum)

在训练的过程中,两个优化器交替使用,比如在奇数epoch时选择optim1优化器,在偶数epoch时选用optim2优化器
(2)word_embedding的选用
word_embedding用了两种,一种是利用大规模语料训练得出的word_embedding, 另一种是随机初始化的word_embedding. 两个embedding串接作为当前词的word_embedding.
这里写图片描述
如图中所示, <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>