Transition-based的依存解析方法
解析过程:首先设计一系列action, 其就是有方向带类型的边,接着从左向右依次解析句子中的每一个词,解析词的同时通过选择某一个action开始增量构建依存树, 直到句子中的词解析完.
优点:解析过程是线性的, operations步骤随句子长度线性增长
挑战:在解析的每一步都只是利用局部信息,会导致错误传播,性能比graph-based效果略差
目前工作:Graph-based的依存解析方法
解析过程:学习一个打分函数,针对一句话在所有可能的解析结果(解析的依存树)中执行全局的穷举搜索,得到一个打分最高的解析树.
优点:目前效果相比transition-based较好
挑战:搜索的过程速度很慢
目前工作:
下面这段文字出自paper
Transition-based dependency parsers read words sequentially (commonly from left-to-right)
and build dependency trees incrementally by making series of multiple choice decisions. The
advantage of this formalism is that the number of operations required to build any projective parse tree is linear with respect to the length of the sentence. The challenge, however, is that the decision made at each step is based on

本文探讨了两种依存解析方法:Transition-based和Graph-based。Transition-based方法利用局部信息逐词构建依存树,操作数与句子长度线性相关,但存在错误传播问题。Graph-based方法通过全局搜索找到最高得分的解析树,效果更优但速度慢。研究表明,尽管Stack LSTMs和全局规范化转换模型试图改善Transition-based解析器,其准确度仍落后于最先进的Graph-based解析器。
最低0.47元/天 解锁文章
332

被折叠的 条评论
为什么被折叠?



