[ACL2017] Get to The Point: Summarization with Pointer-Generator Networks

目前已有的生成式文本摘要有两个显著的缺点:
(1)不准确复制事实细节(复制的事实细节不对)
(2)有时候摘要会重复他们本身
针对这两个问题,本文给出了相应的解决方法:
(1)pointer-generator模型(指针生成网络), 通过指针从源文本中复制单词以解决OOV问题,并且有能力生成新词(在源文本中没有出现的词)
(2)coverage机制:解决seq2seq模型生成句子中经常有重复片段现象
首先给出以往做法的框架图,其实也是生成式文本摘要的开山之作《a neural attention model for abstractive sentence summarization》的思想,简而言之,就是在解码的第t步用attention计算出源文本中所有词的概率分布,然后生成文本向量c t _t t, 利用c t _t t和解码的h t − 1 _{t-1} t1生成第t步在固定词汇集上的概率分布:在这里插入图片描述
本文的主要思想框架如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值