seq2seq模型目前还有很多缺点,本文所做实验表明:
(1)生成的文本过短,3%的摘要不超过3个词
(2)随着生成序列的增加,生成性能急剧恶化
(3)重复生成某个词
(4)侧重于复制原文
也就是说基于原文自由式生成的摘要的seq2seq模型目前效果还不甚满意,所以本文想要结合摘要模板做生成,又由于传统的基于模板的文本摘要也有如下缺陷:
(1)构建模板非常耗时
(2)需要有专业的领域知识
(3)开发各个领域的所有摘要模板不现实
受基于检索的对话系统的启发,作者认为相似文本的摘要作为软模板,用于指导当前文本生成摘要有指导,所以本文的做法是:seq2seq+soft template
本文的方法有三个模块,分别是Retrieve, Rerank以及Rewrite, 我们分别介绍
Retrieve: soft template
特别注意一点的是:论文中出现的 the input sentence x,就是指的源文本,也就是需要压缩进行摘要的内容,我在这儿摔了个大跟头,我以为源文本有很多句话,这是指其中的一个句子而已,导致我始终不明白Retrieve是怎么做的。
训练集有n个训练实例,具体表示是 X = { ( x 1 x_1 x1, r 1 r_1 r1), ( x 2 x_2 x2, r 2 r_2 r2), …, ( x i x_i xi, r i r_i ri), …, ( x n x_n xn,
[ACL2018]Retrieve, Rerank and Rewrite:Soft Template Based Neural Summarization
最新推荐文章于 2024-11-10 20:24:17 发布
该文针对seq2seq模型在摘要生成中的不足,提出结合软模板的神经摘要方法。通过检索、重排和改写三个步骤,使用相似文本的摘要作为软模板指导摘要生成,解决了模型生成过短、性能下降、重复词汇和过度复制原文的问题。文章详细介绍了Retrieve、Rerank和Rewrite三个模块的工作原理,并联合学习优化模型。

最低0.47元/天 解锁文章
1943

被折叠的 条评论
为什么被折叠?



