Deep Learning and NLP Farm

静心学习,期待进步! ideas, code and more

排序:
默认
按更新时间
按访问量

machine learning的知识收集

机器学习笔记:https://zhuanlan.zhihu.com/danche PaperWeekly:https://zhuanlan.zhihu.com/paperweekly 深度学习与NLP:https://zhuanlan.zhihu.com/lqfarmer http:...

2018-02-05 16:35:57

阅读数:183

评论数:0

BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding

为什么采用’Masked language Model’ ?

2018-11-08 17:13:40

阅读数:72

评论数:0

[NIPS2017]Attention is all you need

这篇文章是火遍全宇宙,关于网上的解读也非常多,将自己看完后的一点小想法也总结一下。 参考文献: https://blog.csdn.net/qq_41058526/article/details/80783925?utm_source=blogxgwz0 ...

2018-10-26 15:15:17

阅读数:78

评论数:0

[NAACL2018]Deep Contextualized Word epresentations

这篇文章是NAACL2018年的best paper, 也是火的炙手可热,网上关于这篇文章的解读也是多如牛毛,但是不是有种说法,一千个人眼里有一千个哈姆雷特,所以讲自己的心得总结于此。也将比较好的解读放在下面的参考文献里。稍后更(一定会更的,必须要给自己压力啊) 参考文献: https://z...

2018-10-24 17:12:34

阅读数:49

评论数:0

[Coling2018]SGM: Sequence Geneatin Model for Multi-Label Classificatin

这篇文章是Coling2018年的best paper, 因为之前解决multi-label问题都是用分类的方法,本文提供了一种新思路,用生成的方式解决该问题。觉得还是挺新颖的,记录一下。 一:任务介绍 Multi-label classification(MLC) is to assign ...

2018-10-23 21:07:26

阅读数:52

评论数:0

自动文本摘要(automatic text summarization)目前的研究方法分类

自动文本摘要通常可分为两类,分别是抽取式(extractive)和生成式(abstractive)。 (1)抽取式摘要判断原文本中重要的句子,抽取这些句子成为一篇摘要。 (2)生成式方法则应用先进的自然语言处理的算法,通过转述、同义替换、句子缩写等技术,生成更凝练简洁的摘要。比起抽取式,生成式...

2018-08-22 12:11:38

阅读数:279

评论数:0

Machine Learning中的基本概念

[1] 概率问题与统计问题 概率是已知模型和参数,推数据。 统计是已知数据,推模型和参数 [2] 分类与回归 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。 [3] 一元线性回归和多元线性回归 回归分析中,如...

2018-08-19 20:25:36

阅读数:124

评论数:0

[每日算法] 判断单链表是否有环

算法真的是人类智慧的结晶,所以想每天都看一道算法题锻炼下思维,解决方法不一定是自己想出来的,也可能是参考别人的想法,之所以转载到这里,是因为复习的时候很方便就找出来了。 【问题】 判断单向链表是否有环 【思路】 (1)设置一个Hashset,顺序读取链表中的节点,判断Hashset中是否有...

2018-08-19 10:23:07

阅读数:150

评论数:0

神经网络中涉及到的一些问题

RNN梯度消失和爆炸的原因: https://zhuanlan.zhihu.com/p/28687529 LSTM如何解决梯度消失问题: https://zhuanlan.zhihu.com/p/28749444

2018-08-09 16:15:07

阅读数:63

评论数:0

机器学习十大算法

最近在复习机器学习的一些算法,发现一些博客关于算法表达清楚, 逻辑清晰,讲解透彻,真的怕以后再混沌不开忘记想复习的时候找不到,所以特意放于此地,以便下次方便查询。我是看一个算法记录一下,所以博文应该是慢慢补全 SVM: https://zhuanlan.zhihu.com/p/24638007...

2018-08-09 11:20:34

阅读数:93

评论数:0

极大似然估计与极大后验估计

这两个概念一直说混混沌沌,在看决策树的时候出现了极大似然估计,于是趁此机会也彻底分清楚两个概念, 我们从根源开始说起: 参考文献: https://www.cnblogs.com/sylvanas2012/p/5058065.html...

2018-08-03 23:14:09

阅读数:92

评论数:0

关于熵的种种, 这个熵就是那个熵呗

这个概念一直闹不明白,今天我就彻彻底底想清楚,嘿嘿 经验熵 条件熵 今天有很多东西要更,加油

2018-08-02 19:35:01

阅读数:76

评论数:0

[机器学习算法]决策树

我的短板呀,慢慢积累慢慢攒,结合已有的知识,琢磨琢磨并总结给出自己的理解 类型:有监督学习 决策树目标:根据 training data 学习出一棵合理的决策树,使它能够对实例进行正确的分类, 测试样本通过这棵决策树得到分类结果 学习的步骤: 1. 特征选择, 就是决定用哪个特征来划分特...

2018-08-02 19:30:20

阅读数:59

评论数:0

[每日算法] 兔子的繁殖问题(包含死亡)

解决问题思路最重要 问题: 有一对小兔子,从出生后第3个月起每个月都生一对兔子。小兔子长到第3个月后每个月又生一对兔子。按此规律,假设没有兔子死亡,第一个月有一对刚出生的小兔子,问第n个月有多少对兔子? 思路: 这个月的兔子只有两个来源,一个来源是上个月的老兔子(个数是f(n-1)),另一...

2018-07-31 16:33:59

阅读数:329

评论数:0

NLP中各任务介绍

为了拓展自己看文章的领域,所以有些任务不太清楚,所以记录下,这样下次看到什么任务不清楚的,就可以查看了, 一.句子压缩(sentence compression) 1. 问题描述 句子压缩,顾名思义,就是把长句子压缩成短句子。 输入:原始句 x=x1,x2,x3,...,xnx=x1,x...

2018-07-13 11:19:02

阅读数:214

评论数:0

大学的的NLP组

有已经总结好的清单了,但是我想把这些大学NLP的主页给出来,这样想follow的时候就特别方便.所以就特意做了这个: 一点点累计,一点点写吧. 加州大学-圣塔芭芭拉: http://nlp.cs.ucsb.edu/ 最全国内外自然语言处理(NLP)研究组清单: https://w...

2018-07-12 17:57:40

阅读数:134

评论数:0

pytorch查看网络中的参数

可以通过model.state_dict()或者model.named_parameters()函数查看现在的全部可训练参数(包括通过继承得到的父类中的参数) 可示例代码如下: params = list(model.named_parameters()) (name, param) ...

2018-07-11 14:40:11

阅读数:1652

评论数:0

decoding算法总结

依存树中的解码算法: 我想把每种算法的大概流程都记录下来,以及优缺点,暂时先放在这里 1. dynamic programming 2. maximum spanning tree 3. beam search算法

2018-07-10 14:51:35

阅读数:64

评论数:0

dependency parsing的两种解决方案

Transition-based的依存解析方法 解析过程:首先设计一系列action, 其就是有方向带类型的边,接着从左向右依次解析句子中的每一个词,解析词的同时通过选择某一个action开始增量构建依存树, 直到句子中的词解析完. 优点:解析过程是线性的 挑战:在解析的每一步都只是...

2018-07-09 11:10:55

阅读数:547

评论数:0

CNN的变体

从一篇文章中看到的,说这些都是CNN的变体,其中有看过的,有没有看过的.所以都放在这里,找个事件都浏览下,看下具体的内容. piecewise-CNN distant supervision for relation extraction via piecewise convolutiona...

2018-07-05 22:30:46

阅读数:355

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭