中国矿业大学-Chi Yu's Blog

Email:appleyuchi@foxmail.com

排序:
默认
按更新时间
按访问量
RSS订阅

CNN的卷积运算为何使用互相关而不是卷积

CNN的卷积运算并非数学定义的卷积 也就是说,CNN中的运算是不需要翻转卷积核的。 也就是说,CNN在处理图像时的卷积核是不需要翻转180°的 我们来用代码看下为什么? #-*- coding:utf-8 -*- import sys reload(sys) sys.setdefaultencod...

2019-01-21 14:54:35

阅读数 32

评论数 0

CNN中的权重维度解析以及卷积核中的数值是怎么确定的

以《python深度学习》第五章第一个实验为例,神经网络结构如下: 首先最上面一个池化层max_pooling2d_1:MaxPooling2D 的结果是:(64,) 也就是说相对于下一个卷积层conv2d_2:Conv2D的输入是一个64个像素点的图片。 由于conv2d_2:Conv2D中卷...

2019-01-21 14:46:15

阅读数 31

评论数 0

图像种类的基本概念整理

黑白图像: 图像像素的值只有两种(255,255,255)和(0,0,0) 灰度图: 图像像素的值有256种(0,0,0),(1,1,1)–(255,255,255) 灰度其实就是亮度 什么是真彩色? 图像中的每个像素值都分成R、G、B三个基色分量,每个基色分量直接决定其基色的强度,这样产生的色...

2019-01-21 14:38:03

阅读数 23

评论数 0

最大池化层和平均池化层图解

转载自: https://www.jianshu.com/p/796d30d7dcca

2019-01-21 11:14:11

阅读数 26

评论数 1

kernel和filter这两个概念在CNN中的区别以及卷积核与卷积层的关系

根据参考文献可知 keras中, 当channels=1时,那么filter就是kernel 当channels>1时,那么filter就是指一堆kernel 其中channels表示卷积核的数量,一般为2的指数次方 [1]中引用了[2],[2]中的一段话引用如下: ...

2019-01-19 21:20:50

阅读数 64

评论数 1

神经网络中batch_size的作用(翻译)

one epoch = one forward pass and one backward pass of all the training examples batch size = the number of training examples in one forward/backward ...

2019-01-19 20:23:18

阅读数 57

评论数 0

keras中的神经网络为什么需要多次epoch

Δw(t)=−ε∂E∂w(t)+αΔw(t−1)(9)\Delta w(t)=-\varepsilon\frac{∂E}{∂w(t)}+\alpha\Delta w(t-1)(9)Δw(t)=−ε∂w(t)∂E​+αΔw(t−1)(9) 我们知道反向传播每次迭代的效果是这样的: w=w+Δw(t)...

2019-01-19 18:25:34

阅读数 53

评论数 0

ubuntu16.04+Virtualenv+python2.7+Caffe安装(CPU版本,无opencv)

环境: Ubuntu16.04 AMD 64位 双核 python 2.7.12 虚拟环境:Virtualenv 虚拟环境路径如下: (python2.7) appleyuchi@ubuntu:~/.virtualenvs$ 下面这个安装的缺陷在于,暂时不涉及OpenCV,有需要的请自己配置. ...

2019-01-18 23:11:42

阅读数 19

评论数 0

《Python深度学习》第四章的实验结果图汇总

实验1. 实验2. 实验3. 实验4.

2019-01-18 15:35:30

阅读数 45

评论数 0

神经网络中,正则化L1与L2的区别、如何选择以及代码验证

所谓的正则效果就是: 数学上具备修补项的某些特性。 讲人话,到底什么是正则化? 就是让我们本科时学过的拉格朗日法求极值得到的解集具有某些特征。 L1:(拉普拉斯分布的指数项) 结果会比较稀疏(接近0,或者很大), 好处是更快的特征学习,让很多W为0 但是正则效果可能不太明显; L2:(高斯分布的指...

2019-01-17 20:53:03

阅读数 45

评论数 0

expected dense_10_input to have shape (13,) but got array with shape (1,)

报错log为: 测试某条数据,结果为: Traceback (most recent call last): File “/home/appleyuchi/桌面/Python深度学习/deep_learning_chollet/第三章-神经网络入门/波士顿房价预测.py”, line 175, i...

2019-01-16 16:21:58

阅读数 220

评论数 0

交叉熵概念整理

网上写得实在是太乱,整理下: 交叉熵函数: H(p,q)=Ep[−log q]=−∑x∈χp(x)log q(x)H(p,q)=E_p[-log\ q]=-\sum_{x\in \chi}p(x)log\ q(x)H(p,q)=Ep​[−log&...

2019-01-15 18:31:28

阅读数 45

评论数 0

keras的损失函数类型(转)

https://github.com/keras-team/keras/blob/master/keras/losses.py """Built-in loss functions. """...

2019-01-15 15:28:48

阅读数 37

评论数 0

tensorflow神经网络结构可视化

代码如下: # -*- coding: utf-8 -*- import tensorflow as tf # 图像大小 IMAGE_HEIGHT = 256 IMAGE_WIDTH = 256 MAX_CAPTCHA = 4 CHAR_SET_LEN = 10 input = tf....

2019-01-14 18:54:51

阅读数 31

评论数 0

Backpropagation Through Time:What it Does and How to Do it论文解读

论文发表于1990年,作者哈佛大学数学系毕业, 虽然作者写得很辛苦,但是呢,相关成果在当前并未成为主流,因为我们知道后面LSTM出来了嘛。 一句话概括这篇文章干了啥: 扯白了就是,对于上面途中这个考虑过往输入X(T-1),X(T-2)的RNN结构,作者给出了相关公式, neti(t)=∑j=1i...

2019-01-11 21:30:23

阅读数 41

评论数 1

Finding Structure in Time论文解读

《Finding Structure in Time》-1990 作者Jeffrey L.Elman 已经于2018年的六月份去世了。 该文的引用量非常之高,目前有9000多,所以也导致有些神经网络发展史中把该篇文章视为经典论文。 文章目的是: 提出一种新的结构,用来解决时序相关的问题。 注意,该...

2019-01-11 18:48:42

阅读数 64

评论数 0

Learning representations by back-propagating errors原文解读

反向传播的原文是: 1986年的《Learning representations by back-propagating errors》 xj=∑iyiwjl(1)x_j=\sum_iy_iw_{jl}(1)xj​=i∑​yi​wjl​(1) yj=11+e−xi(2)y_j=\frac{1}{...

2019-01-10 21:14:52

阅读数 76

评论数 0

张量的通俗理解和计算

#############下面引用自知乎############################# 张量(tensor)是多维数组,目的是把向量、矩阵推向更高的维度。更具体点,也即是说: 把三维张量画成一个立方体: 我们就可以进一步画出更高维的张量: 从数据结构上来看,张量就是多维数组。 这...

2019-01-04 17:16:55

阅读数 53

评论数 0

二维卷积详细解释

其中,矩阵A和B的尺寸分别为ma*na即mb*nb ① 对矩阵A补零, 第一行之前和最后一行之后都补mb-1行, 第一列之前和最后一列之后都补nb-1列 (注意conv2不支持其他的边界补充选项,函数内部对输入总是补零); 之所以都是-1是因为卷积核要在图像A上面移动,移动的时候需要满足...

2017-11-21 22:02:55

阅读数 2462

评论数 1

一维卷积详细解释(转载+自己笔记)

一、  定义 离散信号f(n),g(n)的定义如下: N-----为信号f(n)的长度 s(n)----为卷积结果序列,长度为len(f(n))+len(g(n))-1 以3个元素的信号为例: f(n) = [1 2 3]; g(n) = [2 3 1]; s(0) = f(0)g...

2017-11-21 21:22:09

阅读数 10886

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭