强大数定律与弱大数定律的图示详解

代码来自:

https://stats.stackexchange.com/questions/2230/convergence-in-probability-vs-almost-sure-convergence?noredirect=1&lq=1

该链接中,

下面是强大数定律的R语言代码:

n <- 1000; 
m <- 50; 
e <- 0.05
s <- cumsum(1*(rbinom(n, size=1, prob=0.5) - 0))
plot(s/seq.int(n)-0.5, type = "l", ylim = c(-0.4, 0.4))
abline(h = c(-e,e), lty = 2)
paste("---------------------")

Ctrl+a选中所有代码,然后Ctrl+Enter即可在Rstudio中运行了,

运行结果:


代码解释:

rbinom(n,size,prob)   n表示生成的随机数数量,size表示进行贝努力试验的次数,prob表示一次贝努力试验成功的概率例

ylim指的是y轴的上下限设定

h(horizontal):表示水平横线,代码中表示在水平画两条横线,横线对应的函数值分别是e和-e

lty:线条类型


---------------------------------------------------------------------------------------------

下面是弱大数定律的R语言代码:

n<-1000
m<-50


x <- matrix(1*(rbinom(n*m, size=1, prob=0.5) - 0.0), ncol = m) 
print(x)


y <- apply(x, 2, function(z)(cumsum(z)/seq_along(z))-0.5)


matplot(y, type = "l", ylim = c(-0.4,0.4))  


abline(h = c(-e,e), lty = 2, lwd = 2)  


其中的u=0

其中cumsum(z)/seq_along(z)是整个函数体

做了m次实验.每次实验n个样本.

针对向量a=(a1,...,an),cumsum(a)得到a1,a1+a2,a1+a2+a3,....a1+...+an

lwd是线条的宽度

apply(x,2,function(z)cumsum(z)/seq_along(z))表示矩阵中的每列值代入function(z)中

因为是服从伯努利分布

运行结果如下:

apply的用法参考:

http://blog.fens.me/r-apply/


理论参考:

https://www.zhihu.com/question/21110761

https://en.wikipedia.org/wiki/Law_of_large_numbers#Weak_law

根据上面两个链接的论述,弱大数定律在强大数定律之前被发现,

如果期望存在的话,弱大数定律与强大数定律同时成立,

如果期望不存在,那么弱大数定律成立,强大数定律不成立。


也就是说,两者的前提条件可以相同,也可以不相同。

上述两个代码的情况是在两者的前提条件都一致的情况下进行的图形绘制。


所以两段代码其实是同一个意思,只不过第二份代码画了一大堆,所以能看到有跑出上下限制(-0.05,0.05)的,第一个代码只画了一条线,所以很难碰到有跑出上下虚线的



阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

强大数定律与弱大数定律的图示详解

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭