VLAD

Jégou H, Perronnin F, Douze M, et al. Aggregating local image descriptors into compact codes[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012, 34(9): 1704-1716.

http://blog.csdn.net/happyer88/article/details/47054503

VLAD可以理解为是BOF和fisher vector的折中
BOF是把特征点做kmeans聚类,然后用离特征点最近的一个聚类中心去代替该特征点,损失较多信息;
Fisher vector是对特征点用GMM建模,GMM实际上也是一种聚类,只不过它是考虑了特征点到每个聚类中心的距离,也就是用所有聚类中心的线性组合去表示该特征点,在GMM建模的过程中也有损失信息;
VLAD像BOF那样,只考虑离特征点最近的聚类中心,VLAD保存了每个特征点到离它最近的聚类中心的距离;
像Fisher vector那样,VLAD考虑了特征点的每一维的值,对图像局部信息有更细致的刻画;
而且VLAD特征没有损失信息。

展开阅读全文

没有更多推荐了,返回首页