题意
有n个点,且2|n,要求将其分为n/2对点对使得所有点对中距离之和尽量小
输出保留两位小数
考虑数据范围先想到的是搜索,然而搜索超时,我们发现在搜索的时候有重复搜索的情况,那么考虑记忆化,看到数据范围,便想到状压dp,每个点对应一个二进制位,未配对的记为1,已经配对的记为0。如n=8,未配对的点为1,3,5,7,则对应的二进制为01010101,对应的十进制为85,则把(1,3,5,7)配对的最小值存储在f[85]中。
那么我们可以写出状态转移方程
f[i]=min(f[i xor(1<<(x-1))xor(1<<(y-1))]+dis(x,y))
(i&(1<<(x-1))!=0)&(i&1<<(y-1))!=0)
然后这道题直接dp便可解决
#include<bits/stdc++.h>
using namespace std;
const int maxn=25;
const int INF=1000000;
struct node{
int x;
int y;
}a[maxn];
int n,S;
double dis[maxn][maxn],d[(1<<20)+5];
void ins(){
for(int i=1;i<=n;++i){
for(int j=i+1;j<=n;++j){
dis[i][j]=dis[j][i]=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
}
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d %d",&a[i].x,&a[i].y);
}
ins();
for(int S=1;S<=(1<<n)-1;S++){
d[S]=INF;
int i;
for(i=1;i<=n-1;++i){
if(S&(1<<(i-1))) break;
}
for(int j=i+1;j<=n;j++){
if(S&(1<<(j-1))) d[S]=min(d[S],dis[i][j]+d[S^(1<<(i-1))^(1<<(j-1))]);
}
}
printf("%.2lf",d[(1<<n)-1]);
return 0;
}
/*
4
8730 9323
-3374 3929
-7890 -6727
1257 4689
*/