BZOJ_1020_[SHOI2008]_安全的航线flight_(计算几何+二分)

描述


http://www.lydsy.com/JudgeOnline/problem.php?id=1020

给出一条航线(折线),给出\(c\)个陆地(多边形).求航线上距离陆地的最近距离最远的距离.

 

分析


也是一道神题...

 

  1 #include <bits/stdc++.h>
  2 using namespace std;
  3 
  4 const int maxn=20+5,maxm=30+5,maxq=1e6;
  5 const double eps=1e-8;
  6 int c,n;
  7 double ans;
  8 inline int dcmp(double x){ if(fabs(x)<eps) return 0; else return x>0?1:-1; }
  9 struct pt{ 
 10     double x,y; 
 11     pt(double x=0,double y=0):x(x),y(y){}
 12     pt operator + (const pt &a) const { return pt(x+a.x,y+a.y); }
 13     pt operator - (const pt &a) const { return pt(x-a.x,y-a.y); }
 14     pt operator * (const double &p) const { return pt(x*p,y*p); }
 15     pt operator / (const double &p) const { return pt(x/p,y/p); }
 16     pt normal(){ return pt(-y,x); }
 17     bool operator == (const pt &a) const { return !dcmp(x-a.x)&&!dcmp(y-a.y); }
 18     void read(){ scanf("%lf%lf",&x,&y); }
 19 }A[maxn];
 20 typedef pt vt;
 21 inline double dot(vt a,vt b){ return a.x*b.x+a.y*b.y; }
 22 inline double crs(vt a,vt b){ return a.x*b.y-a.y*b.x; }
 23 inline double len(vt a){ return sqrt(dot(a,a)); }
 24 struct sg{
 25     pt a,b;
 26     sg(){}
 27     sg(pt a,pt b):a(a),b(b){}
 28     bool on(const pt &p){ return !dcmp(crs(a-p,b-p))&&dcmp(dot(a-p,b-p))<0; }
 29 }q[maxq];
 30 struct polygon{
 31     int cnt; pt p[maxm];
 32     bool in(const pt &a){
 33         int wn=0;
 34         for(int i=1;i<=cnt;i++){
 35             if(sg(p[i],p[i%cnt+1]).on(a)) return true;
 36             int k=dcmp(crs(p[i%cnt+1]-p[i],a-p[i]));
 37             int d1=dcmp(p[i].y-a.y);
 38             int d2=dcmp(p[i%cnt+1].y-a.y);
 39             if(k>0&&d1<=0&&d2>0) wn++;
 40             if(k<0&&d2<=0&&d1>0) wn--;
 41         }
 42         return wn;
 43     }
 44 }land[maxn];
 45 struct node{
 46     pt p; double d;
 47     node(){}
 48     node(pt p,double d):p(p),d(d){}
 49 };
 50 inline pt get_l_int(pt p,vt v,pt q,vt w){
 51     vt u=p-q;
 52     double t=crs(w,u)/crs(v,w);
 53     return p+v*t;
 54 }
 55 inline node dis_to_sg(pt p,pt a,pt b){
 56     vt v1=b-a,v2=p-a,v3=p-b;
 57     if(dcmp(dot(v1,v2)<0)) return node(a,len(v2));
 58     else if(dcmp(dot(v1,v3)>0)) return node(b,len(v3));
 59     else return node(get_l_int(p,v1.normal(),a,v1),fabs(crs(v1,v2)/len(v1)));
 60 }
 61 inline node find(pt a){
 62     node t; t.d=1<<27;
 63     for(int i=1;i<=c;i++){
 64         if(land[i].in(a)) return node(a,0);
 65         for(int j=1;j<=land[i].cnt;j++){
 66             node tmp=dis_to_sg(a,land[i].p[j],land[i].p[j%land[i].cnt+1]);
 67             if(dcmp(tmp.d-t.d)<0) t=tmp;
 68         }
 69     }
 70     ans=max(ans,t.d);
 71     return t;
 72 }
 73 inline void init(){
 74     scanf("%d%d",&c,&n);
 75     for(int i=1;i<=n;i++) A[i].read();
 76     for(int i=1;i<=c;i++){
 77         scanf("%d",&land[i].cnt);
 78         for(int j=1;j<=land[i].cnt;j++) land[i].p[j].read();
 79     }
 80 }
 81 inline void solve(){
 82     int L=0,R=0;
 83     for(int i=1;i<n;i++) q[R++]=sg(A[i],A[i+1]);
 84     while(L!=R){
 85         sg t=q[L++]; if(L==maxq) L=0;
 86         pt p1=find(t.a).p, p2=find(t.b).p,l=t.a,r=t.b,mid=(l+r)/2;
 87         while(len(l-r)>1e-4){
 88             mid=(l+r)/2;
 89             if(len(mid-p1)<len(mid-p2)) l=mid;
 90             else r=mid;
 91         }
 92         double tmp=min(len(mid-p1),len(mid-p2));
 93         if(ans+0.0001<tmp){
 94             q[R++]=sg(t.a,mid); if(L==maxq) L=0; 
 95             q[R++]=sg(mid,t.b); if(L==maxq) L=0;
 96         }
 97     }
 98     printf("%.2lf\n",ans);
 99 }
100 int main(){
101     init();
102     solve();
103     return 0;
104 }
View Code

 

1020: [SHOI2008]安全的航线flight

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 1021  Solved: 346
[Submit][Status][Discuss]

Description

  在设计航线的时候,安全是一个很重要的问题。首先,最重要的是应采取一切措施确保飞行不会发生任何事故
,但同时也需要做好最坏的打算,一旦事故发生,就要确保乘客有尽量高的生还几率。当飞机迫降到海上的时候,
最近的陆地就是一个关键的因素。航线中最危险的地方就是距离最近的陆地最远的地方,我们称这种点为这条航线
“孤地点”。孤地点到最近陆地的距离被称为“孤地距离”。作为航空公司的高级顾问,你接受的第一个任务就是
尽量找出一条航线的孤地点,并计算这条航线的孤地距离。为了简化问题,我们认为地图是一个二维平面,陆地可
以用多边形近似,飞行线路为一条折线。航线的起点和终点都在陆地上,但中间的转折点是可能在海上(如下图所
示,方格标示出了孤地点)。

Input

  输入的第一行包括两个整数C和N(1≤C≤20,2≤N≤20),分别代表陆地的数目的航线的转折点的数目。接下
来有N行,每行有两个整数x,y。(x,y)表示一个航线转折点的坐标,第一个转折点为航线的起点,最后一个转折点
为航线的终点。接下来的输入将用来描述C块大陆。每块输入由一个正整数M开始(M≤30),M表示多边形的顶点个
数,接下来的M行,每行会包含两个整数x,y,(x,y)表示多边形的一个顶点坐标,我们保证这些顶点以顺时针或逆
时针给出了该多边形的闭包,不会出现某些边相交的情况。此外我们也保证输入数据中任何两块大陆不会相交。输
入的所有坐标将保证在-10000到10000的范围之间。

Output

  输出一个浮点数,表示航线的孤地距离,数据保留2位小数。

Sample Input

1 2
-9 -6
5 1
3
0 16
-16 -12
17 -6

Sample Output

0.00

HINT

Source

 

转载于:https://www.cnblogs.com/Sunnie69/p/5648792.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值