题意
给你长度为 \(n\) 的两个排列 \(A,B\) 组成的序列,求最少的交换相邻数字的次数使得 \(A,B\) 分别有序。
\(n\leq 2000\) .
分析
如果只有一个排列时最少交换次数为逆序对数,方案可从小到大枚举数字 \(a_i\),并向左移动直到前面的数有序且没有比 \(a_i\)大的数为止。
发现当前序列的每个数字仍然会按照上述方式交换,否则逆序对仍要交换且还有多余的部分。
只是两个序列的错杂交换会相互影响,于是考虑定义状态 \(f_{i,j}\) 表示 \(A\) 序列的前 \(i\) 个有序,\(B\) 序列的前 \(j\) 个有序(一定占据了前 \((i+j)\) 个位置)最小的交换次数。每次枚举是哪一边交换并查询还需要和前面的多少个元素交换即可。
总时间复杂度为 \(O(n^2logn)\)。
代码
#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=4004 + 7,inf=0x3f3f3f3f;
int n;
int a[2][N],tr[N],f[N][N];
char s[10];
int lowbit(int x){return x&-x;}
void modify(int x,int y){for(int i=x;i<=2*n;i+=lowbit(i)) tr[i]+=y;}
int query(int x){int res=0;for(int i=x;i;i-=lowbit(i)) res+=tr[i];return res;}
int main(){
n=gi();
rep(i,1,2*n){
int x;
scanf("%s%d",s,&x);
a[s[0]=='W'][x]=i;
modify(i,1);
}
a[0][0]=a[1][0]=2*n+1;
memset(f,0x3f,sizeof f);
f[0][0]=0;
rep(i,0,n){
modify(a[0][i],-1);
rep(j,0,n){
modify(a[1][j],-1);
if(i||j){
if(i) Min(f[i][j],f[i-1][j]+query(a[0][i]-1));
if(j) Min(f[i][j],f[i][j-1]+query(a[1][j]-1));
}
}
rep(j,0,n) modify(a[1][j],1);
}
printf("%d\n",f[n][n]);
return 0;
}