【BZOJ1049】 [HAOI2006]数字序列

BZOJ1049 [HAOI2006]数字序列


dp好题?

第一问

第一问我会做!令\(b_i=a_i-i\),求一个最长不下降子序列.

\(n-ans\)就是最终的答案.

第二问

好难啊.不会.挖坑待补.

考虑一下对于一个i~j的可能符合情况,定然存在一个\(k\)在i~k之中为\(a_i\),k~j之中为\(a_j\).

然后就可以dp了.

这个转移比较玄学.如果不随机就GG了.

随机的证明

代码实现

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
inline int gi()
{
    int f=1,sum=0;char ch=getchar();
    while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0' && ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
    return f*sum;
}
const int N=50010;
int a[N],n,L,cnt,mn[N],f[N],front[N],to[N<<2],nxt[N<<2];
ll g[N],s1[N],s2[N];
int find(int x){
    int l=1,r=L,t=0;
    while(l<=r){
        int mid=(l+r)>>1;
        if(mn[mid]<=x)t=mid,l=mid+1;
        else r=mid-1;
    }
    return t;
}
void dp(){
    memset(mn,127,sizeof(mn));
    mn[0]=-(1<<30);
    for(int i=1;i<=n;i++){
        int q=find(a[i]);
        f[i]=q+1;
        L=max(L,f[i]);
        mn[q+1]=min(mn[q+1],a[i]);
    }
}
void Add(int u,int v){
    to[++cnt]=v;nxt[cnt]=front[u];front[u]=cnt;
}
void solve(){
    for(int i=n;~i;i--){
        Add(f[i],i);
        g[i]=1ll<<60;
    }
    g[0]=0;a[0]=-(1<<30);
    for(int u=1;u<=n;u++)
        for(int i=front[f[u]-1];i;i=nxt[i]){
            int v=to[i];
            if(v>u)break;
            if(a[v]>a[u])continue;
            for(int j=v;j<=u;j++)s1[j]=abs(a[v]-a[j]),s2[j]=abs(a[u]-a[j]);
            for(int j=v+1;j<=u;j++)
                s1[j]+=s1[j-1],s2[j]+=s2[j-1];
            for(int j=v;j<u;j++)
                g[u]=min(g[u],g[v]+s1[j]-s1[v]+s2[u]-s2[j]);
        }
}
int main(){
    n=gi();
    for(int i=1;i<=n;i++)a[i]=gi()-i;
    a[++n]=1<<30;
    dp();solve();
    printf("%d\n%lld\n",n-f[n],g[n]);
    return 0;
}

转载于:https://www.cnblogs.com/mleautomaton/p/10314664.html

weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值