十进制浮点数转换成IEEE754标准的32浮点数的二进制格式

将20.163转换成754标准的32位浮点数

1.将十进制数转换成二进制数

十进制浮点数,整数部分转换成二进制,采用除2取余法,将余数从低到高排列,即为整数的二进制数;

小数部分转换成二进制,采用乘2取整法,将取整数顺序排列,即为小数的二进制数。

小数部分乘2直到小数部分为0,或取到想要的位数,或循环出现前。

整数部分

20/2=10    ....  0

10/2=5      ....  0

5/2=2        ....  1

2/2=1        ....  0

1/2=0         ..... 1

小数部分

0.163*2=0.326        0

0.326*2=0.652        0

0.652*2=1.304        1

0.304*2=0.608        0

0.608*2=1.216        1

0.216*2=0.432        0

0.432*2=0.864        0

0.864*2=1.728        1

0.728*2=1.456        1

0.456*2=0.912        0

不要求精度时,通常取到8~10位

20.163=10100.0010100110

2.移动小数点到第1、2位之间,得e的值

10100.0010100110=1.01000010100110 *2的4次方    e=4(小数点移动4位)

3.求出S、E、M的值

S=0,E=4+127=131,M=01000010100110

S由小数点的后一位可以看出,0为正数,1为负数。

0  1000001 01000010100110000000000

IEEE754标准中32位浮点数表示

S         E               M

S是符号位占1位,E是阶码占8位,M是尾数占23位。



当尾数的值不为0时,尾数的最高有效位应为1,这称为浮点数的规格化表示

这样形式的叫规格化

新手初学,有问题或者错误,麻烦评论下 留言指正,谢谢

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页