Description
输入一个有向图,判断该图是否是有向无环图(Directed Acyclic Graph)。
Input
输入的第一行包含两个整数n和m,n是图的顶点数,m是边数。1<=n<=100,0<=m<=10000。
接下来的m行,每行是一个数对u v,表示存在有向边(u,v)。顶点编号从1开始。
Output
如果图是DAG,输出1,否则输出0
Sample Input
3 3 1 2 2 3 3 1
Sample Output
0
//有向无环图至少又一个只有入边没有出边的点
#include<iostream>
#include<memory>
using namespace std;
const int MAX = 102;
int n, m;
int edge[MAX][MAX];
bool isPoint[MAX];
void find_Point()
{
for(int j=1;j<=n;j++)
{
int sum=0;
for(int i=1;i<=n;i++)
sum+=edge[j][i];
if(sum==0)
isPoint[j]=true;
}
}
bool isDAG()
{
for(int i=1;i<=n;i++)
if(isPoint[i])
return false;
return true;
}
int main()
{
memset(isPoint, false, sizeof(isPoint));
memset(edge, 0, sizeof(edge));
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int a, b;
cin>>a>>b;
edge[a][b]=1;
edge[b][a]=1;
}
find_Point();
if(!isDAG())cout<<"1"<<endl;
else cout<<"0"<<endl;
return 0;
}