题意:原题在这
参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nn 个深埋在地下的宝藏屋, 也给出了这 nn 个宝藏屋之间可供开发的mm 条道路和它们的长度。
小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。
小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。
在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。
新开发一条道路的代价是:
L×K
L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋) 。
请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。
做法:(详见行内注释)
1. 先跑一遍dfs,如果一个状态某一点没走,更新状态之后dis++,ans取最小值
2. dp[s]表示当状态为s时所用的最小价值,dp[s|(1<<j-1)]=dp[s]+dis[i]*line[i][j];
3. dfs更新状态的时候记得把dis[j]改回去
4. 邻接矩阵不知道为啥不能用可能是经常用前向星不熟结果写瓷了,WA了一半...
代码:
#include<algorithm> #include<cstdio> #include<string.h> #include<cmath> #define inf 9999999 using namespace std; int n,m,ans=inf; int dis[10005],line[50][50],vertex[50][50]; int dp[1<<20]; //void add(int s,int t,int l)//邻接矩阵存边 //{ //line[s][t]=l; //line[t][s]=l; //vertex[t][s]=1; //vertex[s][t]=1; //} void dfs(int s) { for(int i=1;i<=n;i++) { if((1<<(i-1))&s) { for(int j=1;j<=n;j++) { if(!((1<<(j-1))&s) && line[i][j]!=inf)//j还没有走且i,j之间已经更新道路 { if(dp[s|(1<<j-1)]>dp[s]+dis[i]*line[i][j]) { int temp=dis[j]; dis[j]=dis[i]+1; dp[s|(1<<j-1)]=dp[s]+dis[i]*line[i][j]; dfs(s|(1<<(j-1))); dis[j]=temp;//记得要改回去 } } } } } } int main() { cin>>n>>m; for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) { line[i][j]=inf; } for(int i=1;i<=m;i++) { int a,b,c; cin>>a>>b>>c; // if(l<line[s][t]) add(s,t,l); line[a][b]=min(line[a][b],c); line[b][a]=min(line[b][a],c); } for(int i=1;i<=n;i++) { memset(dis,inf,sizeof(dis)); memset(dp,inf,sizeof(dp)); dis[i]=1; dp[1<<(i-1)]=0;//从第i个开始 dfs(1<<(i-1)); ans=min(ans,dp[(1<<n)-1]); } cout<<ans<<endl; }