arlionn
码龄8年
求更新 关注
提问 私信
  • 博客:5,346,336
    社区:1
    动态:12
    5,346,349
    总访问量
  • 143
    原创
  • 5,446
    粉丝
  • 18
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
目前就职: 中山大学
加入CSDN时间: 2017-09-08

个人简介:毕业于西安交通大学,现任教于中山大学岭南学院。公众号「连享会 (ID:lianxh_cn)」创办人。

博客简介:

Stata连享会

博客描述:
连玉君老师团队 - 主页 lianxh.cn
查看详细资料
个人成就
  • 获得1,766次点赞
  • 内容获得223次评论
  • 获得16,898次收藏
  • 代码片获得8,463次分享
  • 博客总排名80,511名
  • 原力等级
    原力等级
    6
    原力分
    2,936
    本月获得
    4
创作历程
  • 64篇
    2025年
  • 314篇
    2024年
  • 249篇
    2022年
  • 617篇
    2021年
  • 48篇
    2020年
  • 48篇
    2019年
  • 46篇
    2018年
  • 2篇
    2017年
成就勋章
TA的专栏
  • 数据资源
    51篇
  • Stata连享会
    878篇
  • 倍分法DID
    34篇
  • R
    12篇
  • 教学软件
    21篇
  • Tobit
    4篇
  • Jupyter Notebook
    5篇
  • stata快讯
    24篇
  • stata基础
    115篇
  • stata数据处理
    126篇
  • stata编程
    81篇
  • stata绘图
    80篇
  • 回归分析
    124篇
  • 处理效应模型
    18篇
  • stata-cmd
    87篇
  • stata-intro
    2篇
  • 学术论文
    60篇
  • MathType
    1篇
  • 事件研究法
    6篇
  • 结果输出
    34篇
  • 公司金融
    3篇
  • 因果推断
    47篇
  • 内生性专题
    104篇
  • 面板数据
    40篇
  • markdown
    25篇
  • github
    4篇
  • 统计基础
    17篇
  • stata-时间序列
    15篇
  • Logit-Probit
    22篇
  • Bootstrap-MC
    3篇
  • 空间计量
    20篇
  • 爬虫
    26篇
  • python
    39篇
  • 文本分析
    25篇
  • 机器学习
    12篇
  • 数据可视化
    7篇
  • 交乘项
    6篇
  • 倾向得分匹配分析(PSM)
    7篇
  • 调节效应
    5篇
  • 中介效应
    7篇
  • 蒙特卡洛模拟
    2篇
  • 列表
    1篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

创作活动更多

王者杯·14天创作挑战营·第2期

这是一个以写作博客为目的的创作活动,旨在鼓励码龄大于4年的博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见https://bbs.csdn.net/topics/619735097 2、文章质量分查询:https://www.csdn.net/qc 我们诚挚邀请你们参加为期14天的创作挑战赛!

56人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

AI自动生成研究假设,靠谱吗?流程与挑战

AI假设生成, 大语言模型, 机器学习, LLM, Prompt设计, Transformer, Ludwig, Mullainathan, Batista, AI工具, ChatGPT
转载
发布博客 前天 23:14 ·
20 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AI工具!AI工具分类大集合

AI助手, ChatGPT, DeepSeek, Kimi, 通义千问, 文心一言, 豆包, AI tools
转载
发布博客 前天 23:10 ·
13 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Kaggle-数据科学平台:找数据、搜代码一网打尽

数据科学, Python数据集, Jupyter Notebook, 数据分析, 机器学习, Python, R语言
转载
发布博客 前天 23:08 ·
16 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

R+Stata:两部模型的理论和实操-twopm

本文介绍了R和Stata中两部模型(TPM)的实现方法,用于分析零值过多的数据。TPM通过Logit/Probit模型预测事件是否发生,然后在非零子样本上使用回归模型估计具体数值。文章以医疗费用数据为例,展示了数据预处理、模型拟合及结果解释的全过程,为医疗经济学、消费行为等领域的研究者提供了实用工具。文中包含完整的R和Stata代码,便于读者直接应用。
转载
发布博客 2025.05.28 ·
34 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AI助手系列:借助AI工具复现高质量图形

可视化是数据分析中的核心环节。许多时候,我们会遇到一些设计精巧、细节丰富的图形,想要用代码复现却无从下手,尤其是面对复杂的布局和专业的标注,往往需要反复调试才能还原原图效果。
转载
发布博客 2025.05.27 ·
30 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

IV:形形色色的IV

本文摘译自Wu等人(2022)的综述文章,系统梳理了工具变量(IV)在因果推断和机器学习领域的最新研究进展。工具变量方法通过满足相关性、排他性和独立性三个基本假设,有效应对未观测混杂因素的挑战。传统方法如两阶段最小二乘法(2SLS)存在线性假设强、难以处理非线性关系等局限。近年来,深度学习方法如DeepIV、KernelIV、DualIV等通过引入神经网络、核方法和对偶优化等技术,显著提升了工具变量方法的灵活性和适用性。特别是DeepIV,通过两阶段深度神经网络建模处理变量的条件分布并估计因果效应,展现了强
转载
发布博客 2025.05.21 ·
34 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

R 语言绘制供需曲线指南

本文介绍了如何使用R语言中的ggplot2和Hmisc包绘制经济学中的供需曲线图。首先,作者详细说明了如何安装和加载必要的R包,包括ggplot2、dplyr和Hmisc。接着,通过Hmisc包中的bezier函数生成平滑的供给曲线,并使用ggplot2进行绘制。随后,作者展示了如何创建多条不同形态的供给曲线,并将它们合并到同一图表中进行可视化。文章最后提醒读者,若页面无法正常显示数学公式和代码,建议阅读原文以获得更好的阅读体验。
转载
发布博客 2025.05.19 ·
27 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

R:常用数据处理函数可视化解读

本文由李长生编写,主要介绍了R语言中常用数据处理函数mutate、summarize、group_by和ungroup的可视化解读。文章提供了这些函数的动画演示文件,并通过penguins数据集展示了如何在实际操作中应用这些函数。mutate函数用于向数据框中添加或替换列,可以通过.before或.after参数控制新列的位置。文章强调了这些函数的非破坏性操作特性,即在添加新列时保留原有数据。读者可以通过下载动画文件更直观地理解这些函数的使用方法。
转载
发布博客 2025.05.18 ·
27 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Stata:带有样本选择的分位数回归-arhomm-qregsel

本文介绍了在Stata中实现带有样本选择修正的分位数回归方法,主要基于Arellano和Bonhomme(2017)的估计器。样本选择偏误在实证经济学中是一个常见问题,特别是在分析工资和就业数据时,传统回归模型可能因仅观察到部分样本而产生偏差。本文提出的方法通过引入copula函数来修正分位数回归模型中的样本选择偏误,从而提供更准确的分布估计。该方法的核心在于使用旋转“检验”函数来调整分位数水平,并根据样本选择强度进行校正。文章还详细介绍了样本选择模型的建模过程,包括潜在结果、参与决策方程和观察结果的公式,
转载
发布博客 2025.05.14 ·
61 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2025年学术研究中的15大最佳AI工具

本文摘译自《Nature》2025年封面文章《AI for research: the ultimate guide to choosing the right tool》,介绍了15款在学术研究中广泛应用的AI工具。这些工具涵盖了从文献检索、实验设计到数据分析、学术写作等多个环节,帮助科研人员提高效率并专注于创新。文章详细介绍了ChatGPT和Claude两款工具的核心功能及使用场景,展示了它们在生成研究假设、优化论文结构和语言表达方面的优势。通过这些AI工具,研究者能够在复杂的学术环境中更高效地完成工作
转载
发布博客 2025.05.12 ·
59 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python-EconML包:快速上手动态双重机器学习

Python-EconML包:快速上手动态双重机器学习
转载
发布博客 2025.05.11 ·
57 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Stata:组间边际效应差异检验-mecompare命令

本文介绍了在社会科学研究中比较不同模型预测和边际效应的重要性,尤其是处理非线性模型(如logit和probit模型)时的复杂性。传统方法难以直接比较不同模型的回归系数,因此需要一种通用且灵活的方法。文章详细回顾了边际效应和离散变化的表示方法,如代表性边际效应(MER)、平均边际效应(AMEs)、代表性数值的离散变化(DCR)和平均离散变化(ADC)。此外,文章还讨论了组内预测值和效应的比较方法,包括Wald检验统计量的计算,用于检验不同组别间预测值或效应的差异。通过这些方法,研究者可以更准确地理解和比较不同
转载
发布博客 2025.05.11 ·
46 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

找不到IV?如何借助大语言模型寻找工具变量

内生性是因果推断中最关键的问题,在处理内生性问题的方法中,工具变量是最常用的方法之一。但寻找有效的,还要满足排他性限制 (exclusion restrictions) 的工具变量,主要依赖于作者的说理论证,这一过程对写作者的说理能力和创造力的要求是很高的。因此,本文提出利用大型语言模型 (LLMs)来辅助发现新的工具变量。作者认为,使用大语言模型搜索工具变量有如下好处:第一,在特殊的论文情景下,实现快速搜索工具变量;第二,与大语言模型互动,可以在自己的研究领域发现更多新的工具变量;
转载
发布博客 2025.05.08 ·
53 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

文献追踪神器:Research Rabbit 使用指南

Research Rabbit 是一款基于文献关系图谱的探索工具,帮助你发现、追踪和管理学术文献。相较于传统数据库,Research Rabbit 更强调文献之间的网络关系,让你在“图”中读文献,在“图”中找线索。
转载
发布博客 2025.05.07 ·
204 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

给经济学研究者的Prompt Engineering指南:如何用AI高效构建研究假设?

给经济学研究者的Prompt Engineering指南:如何用AI高效构建研究假设?
转载
发布博客 2025.05.06 ·
52 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

从“能看”到“好懂”:科研图表设计的原则和建议

一张图片胜过千言万语。随着网络新闻、博客和社交媒体的兴起,一张好的图片可以承载的信息越来越多。为更好传播经济学研究,学者们都应该花时间思考如何构建引人入胜且有效的图表。那一幅有效的图表应满足什么条件呢?关键在于充分利用大脑的“前注意视觉处理(pre-attentive visual processing)”功能,即人眼只能检测有限的视觉特征,如形状或对比度,当看到一个图表时,人眼会轻易地将图表的这些特征组合起来,并在无意识间就将它们感知为一个整体图像。
转载
发布博客 2025.05.05 ·
53 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

如何借助 AI 工具来伴读一篇理论类的论文?

我是如何借助 AI 工具来伴读一篇理论类的论文的。今天读的论文不算太难:寇宗来、毕睿罡、查存. (2020). 融资约束对企业广告和研发策略的影响:理论与经验证据. 《世界经济》, 43 (4), 28–51.有兴趣的读者也可以尝试把本文的提示词丢给或,体验不同 AI 工具的表现。
转载
发布博客 2025.05.02 ·
39 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文复现:合成控制法需要做哪些假设检验?

Reynaerts, J., J. Vanschoonbeek,本论文的实证分析部分系统涵盖了合成控制法主流的检验方法,包括政策效果的标准误、p 值和置信区间的计算。此外,作者还详细展示了多案例合成控制法的实现过程,为相关实证研究提供了全面的参考范例。
转载
发布博客 2025.04.30 ·
37 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

提示词!用 DeepSeek 快速生成更优代码

自然语言编程」与 Python 编程、C++ 编程并不存在本质区别 —— 都是向计算机发出指令,要求其执行特定的操作。不同之处在于,Python 编程、C++ 编程等编程语言有着严格的语法规则和结构化的语法,而自然语言编程则是用人类的自然语言(如中文、英文)来描述计算机要执行的操作。因此,虽然在开始阶段,大家会感觉自然语言编程比 Python、C++ 等编程语言更简单,但实际上,想要发挥自然语言编程的真正潜力,最重要的是你的思维方式和沟通方式 (如何提问题)。提示词」可以视为「自然语言编程」的代码。
转载
发布博客 2025.04.29 ·
50 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python常用包盘点:经济与金融领域的必备工具包

截至 2024 年 5 月 6 日,Python 社区已发布超过个包(),涵盖了从科学计算、数据分析到机器学习、Web 开发的几乎所有领域。用户可通过进行查找和安装。然而,对于经济、金融、管理、社会科学等领域的初学者来说,要在如此庞大的生态中快速识别出高效实用的工具包,并不容易。
转载
发布博客 2025.04.28 ·
49 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多