Stata:预测模型中的临床决策曲线-dca

本文介绍了如何利用Stata进行临床决策曲线(DCA)分析,以解决诊断试验中假阳性和假阴性问题,探讨如何找到净收益最大化的决策点。纪念斯隆凯特琳癌症研究所的资源提供了DCA的理论、软件教程和实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文阅读:https://www.lianxh.cn/news/fcac70dd3fa99.html

目录

1. 临床决策曲线分析

诊断试验中根据灵敏度和特异度可以做出 ROC 曲线,得到 AUC,来评价诊断试验的准确性。但数理统计上的准确并不代表患者一定会受益。比如下图所示,通过某观测值预测患者是否患了某病,无论选取哪个值为临界值,都会遇到假阳性和假阴性的可能。

但临床上有时候避免假阳性受益更大,有时候避免假阴性受益更大。所以希望找到一个净受益最大的方法。DCA 就应运而生了。纪念斯隆凯特琳癌症研究所的官方网站上设立了专门的网页,来介绍 DCA 的相关理论、发表文章以及软件实现方法。「网站」提供了 Stata、R 和 SAS 三种软件实现 DCA 曲线分析,并配有详细的教程。

全文阅读:Stata:预测模型中的临床决策曲线-dca| 连享会主页

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值