全文阅读:https://www.lianxh.cn/news/fcac70dd3fa99.html
目录
1. 临床决策曲线分析
诊断试验中根据灵敏度和特异度可以做出 ROC 曲线,得到 AUC,来评价诊断试验的准确性。但数理统计上的准确并不代表患者一定会受益。比如下图所示,通过某观测值预测患者是否患了某病,无论选取哪个值为临界值,都会遇到假阳性和假阴性的可能。
但临床上有时候避免假阳性受益更大,有时候避免假阴性受益更大。所以希望找到一个净受益最大的方法。DCA 就应运而生了。纪念斯隆凯特琳癌症研究所的官方网站上设立了专门的网页,来介绍 DCA 的相关理论、发表文章以及软件实现方法。「网站」提供了 Stata、R 和 SAS 三种软件实现 DCA 曲线分析,并配有详细的教程。
全文阅读:Stata:预测模型中的临床决策曲线-dca| 连享会主页