Stata:多处理时点效应估计的Bacon分解-bacondecomp

本文介绍了Andrew Goodman-Bacon提出的双向固定效应估计方法(TWFEDD),如何通过Bacon分解来估计不同时点处理效应。Stata中的bacondecomp命令详解,涵盖理论背景、识别条件及实际应用示例,适合处理复杂时间序列因果分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文阅读:Stata:多处理时点效应估计的Bacon分解-bacondecomp| 连享会主页

目录

1. 简介

标准的 DID 通常用来估计处理组与控制组在处理前后的结果差异,然而在实践中,由于处理往往发生在不同的时间点上,研究者通常使用下式估计处理效应 :

其中, 为截面个体效应, 为时间固定效应, 为个体  在  时刻是否接受处理哑变量。但事实上,我们对于这种不同时点的处理效应理解有很大局限性,且通常依赖于 “条件于群组与时间固定效应,干预应当近似于随机分配” 的一般假定。Andrew Goodman-Bacon (2021) 提出,双向固定效应估计量 (TWFEDD) 等于数据中所有可能的两组或两期 DD 估计量的加权平均值。

其估计的因果解释需要平行趋势假设和随时间恒定的处理效应,他展示了如何分解两个规范之间的差异,并提供了对包含时变控制模型的新分析。本文将简要概述这篇文章,并介绍基于这一分解方法的 Stata 命令 bacondecomp

全文阅读:Stata:多处理时点效应估计的Bacon分解-bacondecomp| 连享会主页

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值