全文阅读:DID偏误问题:两时期DID的双重稳健估计量(上)-drdid| 连享会主页
目录
1. 绪论
1.1 三种 DID 估计方法的比较
对于双重差分模型,最为常见的是通过设定如下交叉项的形式来估计,即通过双重固定效应方式 (two-way fixed effects,TWFE) 来估计,并用估计量 来解释 ATT (下文里将 称为 TWFE 估计量)。
然而要用 TWFE 估计量来推断处理效应,需要满足五个假设,分别为:
- 条件独立性假设 (CIA):即对所有个体,都有 满足独立同分布;
- (条件) 平行趋势假设 (PTA):即当控制了协变量后,如果没有政策冲击,处理组与控制组的结果变动将相同;
- 共同支撑区间假设:控制组和对照组被实验处理的概率较相近;
- 处理效应同质假设:政策处理效应在不同时期是相同的。 ;
- 控制变量稳定性假设:对于控制组和对照组,均有 。
对于第四和第五个假设,Sant 和 Zhao (2020) 强调其并不是双重差分估计所必须的。在只满足前三个假设时,仍旧有两种估计思路可以使用:一种是结果回归法 (Outcome Regression,以下简称 OR),另一种是基于逆倾向得分概率加权法 (Inverse Propesnity Weight Regression,以下简称 IPW)。
结果回归法 (OR 法) 来源于 Heckman 等 (1997、1998),是指根据结果变量 (被解释变量) 构建回归模型,其估计结果无偏性依赖于研究者对结果变量变异原因理解的准确程度。优点在于如果对模型结构有很好掌握的话,识别会较为准确。但问题在于如果不满足,则识别结果准确性则将会大为降低。
逆倾向得分概率加权法 (IPW 法) 来源于 Abadie (2005),是指通过根据倾向得分倒数来构建权重,再进行加权 OLS 回归,以实现类似组间随机分配的处理效果。IPW 方法的优点在于避免了直接对回归模型进行设定,一旦实现了近似随机分配的效果,就可以通过组间差分来获得政策效应估计量。但其缺点在于估计结果依赖于倾向得分计算的准确性。
对于面板数据,OR 法和 IPW 法两种回归方法估计量的表达式分别为: