温馨提示:若页面不能正常显示数学公式和代码,请阅读原文获得更好的阅读体验。
阅读全文:金融面板数据估计:可检验假设和参数一致性 (lianxh.cn)
作者:唐雪梅 (南京审计大学)
邮箱:tangxuemei2018@163.com
编者按:本文主要整理自下文,特此致谢!
Source:Grieser W D, Hadlock C J. Panel-data estimation in finance: Testable assumptions and parameter (in) consistency[J]. Journal of Financial and Quantitative Analysis, 2019, 54(1): 1-29. -PDF-
1. 引言
一致估计的严格外生性假设要求在所有提前和滞后条件下,模型误差项和模型协变量之间不存在相关性 (Wooldridge,2010)。然而,在目前的实证研究中,许多常见的固定效应 (FE) 和一阶差分 (FD) 估计值存在较大差异,甚至符号相反,意味着这些估计很可能违反了严格外生性假设。
近年来,使用工具变量来估计面板数据模型成为一种趋势,最常见是 FE-2SLS,但在已发表的实证金融文章中,几乎没有报告过对严格外生性的检验。本文认为在所有金融面板数据的应用中都应考虑严格的外生性假设,并为如何做到这一点提供指导。
2. 相关文献和实证策略
2.1 传统估计中的外生性检验
考虑一个简单的回归模型:
yit=αi+βxit+εityit=αi+βxit+εit
根据 Wooldridge (2010),把 E(εit∣xit,αi)=0E(εit∣xit,αi)=0 称为同期外生性;把解释变量的滞后值纳入模型 E(εit∣xis,αi)=0E(εit∣xis,αi)=0,则为严格外生性。
Wooldridge (2010) 概述了两个简单的基于回归的检验,以验证严格的外生性假设是有效的零假设。这两个检验都依赖于解释变量的前导值的估计系数,因为理论上这些值在零假设下应该为 0。对于具有单个解释变量,FE 估计的检验回归方程:
yit=αi+βxit+γxi(t+1)+εityit=αi+βxit+γxi(t+1)+εit
使用固定效应变换,而 FD 估计的检验估计方程:
△yit=β△xit+ρxit+△εit△yit=β△xit+ρxit+△εit
如果 γγ 或 ρρ 上的系数显著异于 0,则拒绝严格外生性假设。在多个解释变量的情况下,估计每个变量的 γγ 或 ρρ 系数,测试 γγ 或 ρρ 系数组是否共同有效。测试统计数据是用标准误进行计算的,这些标准误在公司层面进行聚类,以允许任意的序列相关性和异方差。
本文使用模拟数据探索检验。在这些模拟中,主要关注的方程是:
yit=αi+βxit+εityit=αi+βxit+εit
其中,εitεit 满足独立同分布,允许该方程中的解释变量与截距项、误差项的滞后值、同期误差项存在相关性,通过建模来构建这些相关性。
xit=0.40αi+θyi(t−1)+λεit+uitxit=0.40αi+θyi(t−1)+λεit+uit
其中,uituit 满足独立同分布。如果 θθ 和 λλ 均等于 0,则在考虑未观察到的影响后,不存在内生性问题,FE 和 FD 估计值应一致地估计基础参数 ββ。OLS 估计会错误地将未观测效应 αiαi 和解释变量 xitxit 之间的 0.40 相关性混淆为 yityit 和 xitxit 之间因果关系的反映。将 θθ 称为严格的外生性参数,λλ 称为同期外生性参数。当严格的 (同期的) 外生性成立时,θ=0θ=0 (λ=0λ=0)。当严格的 (同期的) 外生性不成立时,假设 θ=0.2θ=0.2 (λ=0.2λ=0.2)。
2.2 IV 估计中的严格外生性检验
IV 面板估计要求工具变量的严格外生性。用 zz 表示变量 xx 的工具变量,则有当 s>ts>t 时,E(εit∣zis,αi)=0E(εit∣zis,αi)=0。如果违反了工具变量的严格外生性,则 FE-2SLS 和 FD-2SLS 的估计将不一致 (Wooldridge,2010)。估计模型:
yit=αi+βxit+zi(t+1)+εit(6)yit=αi+βxit+zi(t+1)+εit(6)
通过 FE-2SLS 估计,用 zitzit 和 zi(t+1)zi(t+1) 作为工具变量,当满足工具变量的严格外生性假设时,则有 δ=0δ=0;如果 δ≠0δ=0,则表明误差项与工具变量未来值之间存在关联。
温馨提示:若页面不能正常显示数学公式和代码,请阅读原文获得更好的阅读体验。
阅读全文:金融面板数据估计:可检验假设和参数一致性 (lianxh.cn)