阅读全文:再中心化IV:Shift-Share IV的新变种
作者: 黎佳迅 (中山大学)
邮箱: lijx357@mail2.sysu.edu.cn
Source:
- Title: 再中心化IV:Shift-Share IV的新变种
- Keywords: 再中心化工具变量, Recentered IV, Shift-Share IV, 工具变量, 外生冲击, 移动份额, Bartik IV, Borusyak, Autor
1. 引言:从 Shift-Share IV 到 Recentered IV
移动份额工具变量 (Shift-Share IV),又称 Bartik IV,是由一组与样本在不同层面的外生冲击,经过按样本对冲击的暴露程度加权求和后得到的工具变量,其形式为:
zi=∑ksikgk(1)zi=k∑sikgk(1)
例如,Autor et al. (2013) 研究了中国进口竞争加剧对美国当地劳动力市场的影响。文中对来自中国的进口构造了 Shift-Share IV,可以用 (1)(1) 式表示,zizi 是 ii 地的工具变量;siksik 是 ii 地 kk 制造业就业人数占 ii 地所有制造业就业总人数的比例;gkgk 是 kk 制造业面临中国进口的冲击,用与美国可比的八个发达经济体 kk 制造业的中国进口增长率衡量。
参考资料:秦范, 2022, Stata论文复现:份额移动法工具变量(Shift-Share IV), 连享会 No.912.
与 Shift-Share IV 类似,Borusyak & Hull (2023) 提出的再中心化工具变量同样是通过已知公式将一组外生冲击 gg 与其他变量 (predetermined variables) ss 结合起来构造的工具变量。两者的区别在于,Shift-Share IV 的构造中,zz 是关于冲击 gg 的线性函数。而在再中心化工具变量的构造中,zz 可以是关于 ss 和 gg 的任意形式函数,而且允许对于不同的 ii 有不同的函数形式,即:
zi=fi(g,s)(2)zi=fi(g,s)(2)
另外一点与 Shift-Share IV 不同的是,在冲击 gg 外生的情况下,(1)(1) 式构造出的工具变量满足外生性条件,但 (2)(2) 式构造出的工具变量仍然可能内生,需要进行 “再中心化”,得到的 z~iz~i 才满足外生性条件。
本文主要内容是对下面几个问题的回答:
- (2)(2) 式构造的工具变量 zizi 的内生性来源是什么?
- 什么是再中心化?为什么再中心化后的 zizi 满足外生性条件?
- 在实证中如何构造再中心化工具变量?
最后,本文还介绍了通过随机推断 (Randomization inference),来对系数进行假设检验、构造置信区间,以及进行模型设定检验的方法。
2. 内生性来源
内生性来源于对外生冲击的非随机暴露。在工具变量的表达式 zi=fi(g,s)zi=fi(g,s) 中,ss 会影响样本对不同冲击的暴露程度,而 ss 可能是内生的,这就导致 zizi 也可能内生。由于 Shift-Share IV 可以看作再中心化工具变量的一个简化版的特例,我们可以用 Autor et al. (2013) 中的 Shift-Share IV 作为例子来理解内生性来源。
工具变量 zi=∑ksikgkzi=∑ksikgk 要满足外生性,需要满足两个条件:第一,各地区在各制造业的份额之和为 1,即 ∑ksik=1∑ksik=1。第二,各制造业上受到中国进口的冲击 gkgk 需为独立同分布。
这两个条件任一不满足,zizi 都可能内生:
-
如果把 siksik 的定义改为 ii 地 kk 制造业就业人数占 ii 地就业总人数(而非制造业就业总人数)的比例,则各地的各制造业份额之和不为 1,即 ∑ksik=Si<1∑ksik=Si<1。那么,即使 gkgk 服从 iid,zizi 也可能内生。假设 gkgk 期望为 θ(θ>0)θ(θ>0),则 E(zi∣s)=SiθE(zi∣s)=Siθ。制造业份额之和 SiSi 越大,平均而言 zizi 越大,而 SiSi 可能与扰动项 εε 相关,导致 zz 内生。
-
如果 gkgk 作用在各制造业上的分布不是 iid,即有些制造业受冲击的期望 θkθk 较大。那么,即使 ∑ksik=1∑ksik=1,zizi 也可能内生。因为 E(zi∣s)=∑ksikθkE(zi∣s)=∑ksikθk,如果一个地区的制造业份额集中在受冲击影响较大(即 θkθk 较大)的行业,则该地区的 zizi 较大。而各行业份额 siksik 可能与扰动项 εε 相关,导致 zz 内生。
总而言之,内生性的来源是 ss 的取值导致各地区的 zizi 产生了系统性差异,而 ss 可能与扰动项相关,从而导致 zizi 与扰动项相关。需要注意的是,这里仅仅用了 Shift-Share IV 的线性函数形式作为例子,如果 fi(g,s)fi(g,s) 是更复杂的函数形式,内生性问题会更加常见。