https://github.com/ultralytics/yolov5/releases/tag/v6.1
conda create -n openvino_yolov6 python=3.7 -y
conda activate openvino_yolov6
pip install -r requirements.txt
export.py
export_onnx(model, im, file, 10, train, False, simplify) # opset 12 10
python export.py --weights yolov5n.pt --img 640 --batch 1
* 设置一个临时的环境变量
cd C:\Program Files (x86)\Intel\openvino_2021.4.752\bin
setupvars.bat
* 安装一些常用的模型优化器
cd C:\Program Files (x86)\Intel\openvino_2021.4.752\deployment_tools\model_optimizer\install_prerequisites
install_prerequisites.bat
* 模型转换
cd C:\Program Files (x86)\Intel\openvino_2021.4.752\deployment_tools\model_optimizer
python mo_onnx.py --input_model H:\tt\yolov5-6.1\yolov5n.onnx --output_dir E:\yolo5n_IR\
测试
python detect.py --weights yolov5n.pt --source data/images/bus.jpg
训练 yolov5 - CHHC - 博客园 (cnblogs.com)



python train.py --weights yolov5s.pt --data data/catdog.yaml --workers 1 --batch-size 8

训练测试
python detect.py --weights catdog.pt --source data/images/1.png
conda activate openvino_yolov6
python export.py --weights catdog.pt --img 640 --batch 1
python mo_onnx.py --input_model H:\tt\yolov5-6.1\catdog.onnx --output_dir E:\IR\catdog



app.py

#!/usr/local/bin/python3
# encodin: utf-8
import cv2
import time
import os
from OpenVinoYoloV5Detector import OpenVinoYoloV5Detector
classes = []
classes_base = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'] # class names
classes_catdog = ['cat', 'dog'] # class names
def get_milsecond():
t = time.time()
return (int(round(t * 1000)))
if __name__ == '__main__':
url = '1.png'
box_color = (0, 255, 0)
# yolov5
conf = {
# "weight_file": "weights/yolov5n_openvino_model/yolov5n.xml",
# "weight_file": "weights/yolov5s_openvino_model/yolov5s.xml",
"weight_file": "weights/catdog_openvino_model/catdog.xml",
"device": "CPU"
}
classes = classes_catdog
detector = OpenVinoYoloV5Detector(IN_conf=conf)
# ssd
# conf = {
# "model_xml": "./weights/ssdlite_mobilenet_v2/FP16/ssdlite_mobilenet_v2.xml",
# "model_bin": "./weights/ssdlite_mobilenet_v2/FP16/ssdlite_mobilenet_v2.bin",
# "device": "CPU"
# }
# rtscap.detector = OpenVinoSSDDetector(IN_conf=conf)
cap = cv2.VideoCapture(url)
while True:
ret, frame = cap.read()
if not ret or frame is None:
break
starttime = get_milsecond()
detect_num, detect_data = detector.detect(frame)
if len(detect_data):
#cv2.imwrite('1.png', frame, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
for m in detect_data:
classid= int(m.get('class_id'))
classname = classes[classid]
score = m.get('score')
location = m.get('location')
box_l, box_t = int(location.get('x1')), int(location.get('y1'))
box_r, box_b = int(location.get('x2')), int(location.get('y2'))
frame = cv2.rectangle(frame, (box_l, box_t), (box_r, box_b), box_color, 2)
frame = cv2.putText(frame, classname + " " + str(score), (box_l, box_t + 15), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 0, 255), 2)
endtime = get_milsecond();
print('检测耗时:' + str(endtime - starttime))
cv2.imshow('openvino detection', frame)
if cv2.waitKey(5) & 0xFF == ord('q'):
break
os.system('pause'
该文详细介绍了如何将Yolov5模型转换为ONNX格式,然后利用Intel的OpenVINO工具套件进行模型优化和部署。通过设置环境变量、安装必要组件、执行模型转换脚本,以及训练和测试自定义数据集,最终实现了一个基于OpenVINO的Yolov5目标检测应用。
620

被折叠的 条评论
为什么被折叠?



